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Abstract: A c-vertex-ranking of a graph G, for a positive 
integer c, is a labeling of the vertices of G with integers such 
that, for any label i, deletion of all vertices with labels > i 
leaves connected components, each having at most c vertices 
with label i. In this paper we newly define a c-vertex-ranking 
of a weighted graph G as follows: let (G, w) be a weighted 
graph, where w is an assignment of positive weights to the 
vertices of G; we label the vertices of (G, w) in such a way 
that it is a c-vertex-ranking of G and the sum of the maximum 
weights of vertices in each rank classes is minimized. To be 

precise, we want to minimize wϕ = where w∑ =
α

1 ,i iw i = 

max{w(u): u∈V(G) is labeled with ranki ϕ(u) = i under a c-
vertex-ranking ϕ}, and α is the number of ranks used by ϕ. A 
c-vertex-ranking ϕ is optimal if wϕ is as small as possible. We 
present an algorithm to find an optimal c-vertex-ranking of a 
given weighted tree (T, w) in time O(α c2α nα+1), where n is 
the number of the vertices in T. 

Keywords: Algorithm, c-Vertex-ranking, Tree, Visible 
vertices, Weighted graph. 
 
1 Introduction 
For a positive integer c, a c-vertex-ranking of a graph G 
is a labeling of the vertices with integers such that, for 
any label i, deletion of all vertices with labels > i leaves 
connected components, each having at most c vertices 
with label i [12]. The c-vertex-ranking problem is to 
find a c-vertex-ranking of a given graph using minimum 
number of ranks. The problem is NP-hard in general 
[12], while Zhou et al. have obtained a linear-time 
algorithm to solve the c-vertex-ranking problem for 
trees [12]. Then Kashem et al. have presented a 
polynomial-time algorithm to solve the c-vertex-ranking 
problem for partial k-trees, that is graphs of treewidth 
bounded by a fixed integer k [6]. Recently, Kashem et 
al. have obtained an O(n9log9n log log n) time algorithm 
for solving the c-vertex-ranking problem on series-
parallel graphs [5]. 

An ordinary vertex-ranking of a graph G is a 
labeling (ranking) of vertices of G with integers such 
that any path between two vertices with the same label i 
contains a vertex with label j > i [4]. Clearly an ordinary 
vertex-ranking is a 1-vertex-ranking. Although the 
ordinary vertex-ranking problem is NP-hard in general 
[2, 9], Iyer et al. presented an O(n log n) time algorithm 
to solve the ordinary vertex-ranking problem for 
trees[4] , where n is the number of vertices of the input 
tree. Then  Schaffer  obtained a linear-time algorithm by 
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refining their algorithm and its analysis [10]. Deogun et 
al. gave algorithms to solve the ordinary vertex-ranking 
problem for interval graphs in O(n3) time and for 
permutation  graphs in O(n6) time [3]. Recently, 
Newton et al. presented an O(n3) time algorithm to 
solve the ordinary vertex-ranking problem for 
permutation  graphs [8]. Kloks et al. have obtained an 
algorithm for computing the vertex-ranking number of 
an asteroidal triple-free graph in time polynomial in the 
number of vertices and the number of minimal 
separators [7]. 

In this paper, we newly define a generalization of the c-

vertex-ranking on weighted graphs. Let G = (V, E) be a 
graph, and let w: V → N be an assignment of positive 
weights to the vertices of G. From here on we denote by 
(G, w) a graph with weight w. We consider the 
following c-vertex-ranking problem of the weighted 
graph (G, w): for a c-vertex-ranking ϕ of G, we denote 
by wϕ (i) the maximum weight of the vertices having 
rank i and denote by wϕ  the sum  of these 

maximum weights, where α is the number of ranks used 
by ϕ. Let χ(G, w, α) be the minimum of w

∑ =
α

ϕ1 )(i iw

ϕ among all 
c-vertex-rankings ϕ using α ranks, and let χ(G, w) be 
the minimum among χ(G, w, α) for all α ≥ 1. We say 
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Figure 1: Two optimal 2-vertex-rankings  of  a
weighted tree (T,w )
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the c-vertex-ranking ϕ of G is optimal if wϕ = χ(G, w). 
The optimal c-vertex-ranking can be found using ranks 
≤ α for some α, 1 ≤ α ≤ n. It is possible that two 
optimal c-vertex-rankings of a weighted graph (G, w) 
use different number of ranks. Figure 1 depicts two 
optimal 2-vertex-rankings of a weighted tree (T,w) 
using three ranks, where ranks are drawn in parentheses 
and weights next to the vertices. 

The problem of finding an optimal c-vertex-ranking 
of a graph has applications in scheduling the parallel 
assembly of a complex multi-part product from its 
components, where the vertices of the graph correspond 
to the parts and edges correspond to assembly 
operations [2, 11, 12]. In practical fields, the required 
time for assembling different parts of a product is not 
same, that is, the weight of each vertex is not same. So 
the c-vertex-ranking problem on unweighted graphs is 
not suitable for practical applications. In that case we 
have to consider a weighted graph, where weight of 
each vertex represents required time to complete the 
task associated with the corresponding vertex. Our 
proposed problem is the theoretical interpretation of this 
type of practical problems. 
 
 
2 Preliminaries 
In this section we define some terms and present easy 
observations. Let T = (V, E) be a tree with vertex set V 
and edge set E. We often denote by V(T) and E(T) the 
ssvertex set and the edge set of T, respectively. We 
denote by n the number of vertices in T. T is a ‘free 
tree’, but we regard T as a ‘rooted tree’ for convenience 
sake: an arbitrary vertex of tree T is designated as the 
root of T. We use the notations as: root, internal vertex, 
child and leaf in their usual meaning. An edge joining 
vertex u and v is denoted by (u, v). The degree of a 
vertex u∈V is denoted by d(u). The maximal subtree of 
sT rooted at a vertex v∈V is denoted by T(v). For a c-
vertex-ranking ϕ of tree T and a subtree T′ of T, we 
denote by ϕ|T′  a restriction of ϕ to V(T′ ): let ϕ′ = ϕ|T′, 
then ϕ′(v) =ϕ (v) for all v∈V(T′ ). 

The number of ranks used by a c-vertex-ranking ϕ 
of tree T is denoted by #ϕ. One may assume without 
loss of generality that ϕ uses the consecutive integers 1, 
2, 3, …, #ϕ as the ranks. A vertex v of T and its rank ϕ 
(v) are visible (from the root under ϕ) if all the vertices 
in the path from root to v have ranks ≤ ϕ(v). Thus the 
root of T and #ϕ are always visible. We denote by L(ϕ) 
the list of ranks of all visible vertices, and call L(ϕ) the 
list of c-vertex-ranking ϕ of the rooted tree T. For an 
integer γ  we denote by count(L(ϕ), γ) the number of γ’s 
contained in L(ϕ), i.e. the number of visible vertices of 
rank γ. One can easily observe that count(L(ϕ), γ) ≤ c 
for each rank γ. We then have the following lemma 
[6,12]. 
 

Lemma 2.1 Let T be a tree, and let u be a vertex in T. 
Then a vertex-labeling ϕ  of  T(u) is a c-vertex-ranking 
of  T(u) if and only if  
(a) at most c vertices of the same rank are visible from 

u under ϕ in T, that is, count(L(ϕ),γ)  ≤  c for each 
γ ∈ L(ϕ); and 

(b) if  u is an internal node in T and has d children v1, 
v2, ... ,vd, then ϕ|T(vi) is a c-vertex-ranking of T(vi) 
for each i, 1 ≤  i ≤  d.   

For a list L and an integer i, we define a sublist [i  ≤ L] 
of L as follows: 
   [i  ≤  L] = {l ∈ L | i  ≤  l}. 
Similarly we define sublists [i < L], [L < i] and [L ≤ i] of 
L. For lists L1 and L2 we use L1 ⊆ L2 and L1 ∪ L2 in their 
usual meanings in which we regard L1, L2 and L1 ∪ L2 
as multi-sets.  

We transform the tree T to a binary decomposition tree Tb 
as follows: Regard T as a rooted tree by choosing an 
arbitrary node as the root, and replace every internal node 
u having d children, say v1, v2, … vd  with d + 1 new 

nodes u1, u2,…, ud+1, such that w(ud+1) = w(u),  where ui, 
1 ≤ i ≤ d, is the father of ui+1 and the i-th child ui of u, and 
ud+1 is a leaf of tree Tb [1, 6]. (See Fig 1). This 
transformation can be done in O(n) time [1, 6]. The 
resulting binary decomposition tree Tb has the following 
characteristics: 
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  Figure 2: Illustration of the binary transformation
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• the number of nodes in Tb is O(n); 

• for each internal node u having d children in T, there 
is exactly one leaf ud+1 in Tb such that w(ud+1) = w(u).  

• each leaf  x in Tb  corresponds to a node u in T such 
that w(x) = w(u). 

• each internal node x in Tb is a dummy node with no 
weight.   

  



We associate a subgraph Tx = ( Vx , Ex) of T with each 
node x of Tb, where  
 Vx = { y| y is a leaf in Tb(x) }, and 
 Ex = { (u,v) ∈ | u,v ∈ Vx } 
Thus T is associated with the root of Tb. 
 
3 Optimal c-vertex-ranking of a 
weighted tree 
The main result of this paper is the following theorem. 

Theorem 3.1 Let R be a set of ranks such that a 
weighted tree (T, w) has an optimal c-vertex-ranking 
using α = |R| ranks. Then an optimal c-vertex-ranking 
of a weighted tree having n vertices can be found in 
time O(α c2αnα+1).   

If we assume that α is a constant, we then have the 
following corollary. 

Corollary 3.2 An optimal c-vertex-ranking of a 
weighted tree can be found in polynomial-time if α is 
constant.    
 
Let α be the minimum number of ranks needed for an 
optimal c-vertex-ranking of a weighted tree (T, w). In 
the remaining of this section we give an algorithm to 
find an optimal c-vertex-ranking of a weighted tree (T, 
w) in time O(αc2αnα+1). Our algorithm uses the 
technique of ‘bottom-up-tree computation’. 
We say a sequence (a1, a2, …, aα ) of integers is a valid 
sequence provided each ai is the weight of a vertex of 
tree T, or ai = 0 (ai = 0 means that no vertex has rank i). 
Since there are at most n + 1 different choices for the 
value of ai, the number of valid sequences is at most (n 
+ 1)α. We first assume that (a1, a2, …, aα ) is a fixed 
valid sequence. Our algorithm checks whether there 
exists a c-vertex-ranking ϕ of (T, w) such that wϕ (i) ≤ 
ai. We call such c-vertex-rankings of (T, w) as good c-
vertex-rankings with respect to the valid sequence (a1, 
a2, …, aα). Thus the algorithm checks all valid 
sequences and finds a sequence for which wϕ = 

is minimum and has at least one c-vertex-

ranking. A good c-vertex-ranking ϕ for which w
∑ =

α
1i ia

ϕ is 
minimum is the desired optimal c-vertex-ranking. 
  
Let Tb be the binary decomposition tree of T. We then 
have the following two lemmas. 

Lemma 3.3 Let x be a leaf in Tb that corresponds to a 
vertex u in T, and let ϕ be a good c-vertex-ranking of  
(T, w) with respect to a valid sequence (a1, a2, …, aα). 
Then there exists a rank j, 1 ≤ j ≤ α, such that ϕ(u) = j 
and w(u)  ≤  aj.  
Proof: For a contradiction, let u has rank ϕ(u) = j under 
the c-vertex-ranking ϕ such that w(u) > aj. Then 
wϕ = a1 + a2 + … + aj-1 + w(u) + aj+1 + … + aα 

     > a1 + a2 + … + aj-1 + aj + aj+1 + … + aα .

So the c-vertex-ranking ϕ gives larger weight 
summation than ∑α

i=1 ai, which is not acceptable.   

Lemma 3.4 Let x be an internal node in Tb with two  
children y and  z. Let η and ψ be the c-vertex-rankings 
of Ty and Tz , respectively. Let ϕ be the vertex-labeling 
of Tx extended from η and ψ. Let x and y be the dummy 
vertices in Tb that corresponds to a vertex  u in T, and 
let z be the dummy vertex in Tb corresponds to a vertex 
w in T. Then L(ϕ, u) = L(η, u) ∪ [η(u) ≤ L(ψ, w)]. 
Proof: Here η = ϕ⏐Ty  and  ψ =ϕ⏐Tz and ϕ (u) = η(u). 
Then clearly 
 L(ϕ, u) = L(η, u) ∪ [η (u)  ≤  L(ψ, w)].    
We then have the following algorithm for c-vertex-
ranking of a weighted tree (T, w). 
 
Procedure c_vertex ( ) 
    begin 
1.    decompose the tree T to a binary    decomposition 

tree Tb, and let r be the root of Tb; 
2.    for each valid sequence (a1, a2, …, aα ) do  
       begin  
3. ranking(Tb(r), a1, …, aα); 
4. check whether there exists a c-vertex-ranking                       

at the root; 
       end 
5. find the optimal sequence for which is 

minimum and has a c-vertex-ranking;  
∑=

α
1i ia

6. find a c-vertex-ranking of T having the optimal 
sequence; 

    end 
 

 
Procedure ranking(Tb(x), a1, a2, …, aα) 
   begin 
7.    if  x is a leaf then                                                                             

begin 
           let u be a vertex in T that corresponds to x in Tb;  
8.        for each ai  ≥ w(u) do 
               begin 
9.                a trivial ranking ϕ(u) ← i; 
10.             L(ϕ, u) = {i}; 
               end 

end 
else  
begin 

11. let y and z be the two children of x; let x and y be 
the dummy vertices in Tb that corresponds to a 
vertex  u in T, and let z be the dummy vertex in 
Tb corresponds to a vertex w in T. 

12.     ranking(Tb(y), a1, a2, …, aα); 
13.     ranking(Tb(z), a1, a2, …, aα); 
14.   for each visibility list L(η, u) do 
15.          for each visibility list L(ψ, w) do 
               begin 
16. find a visibility list L(ϕ, u) from     L(η, u) 

and L(ψ, w) using Lemma 3.4; 

  



17.            check whether ϕ is a c-vertex-ranking by    
Lemma 2.1; 

                end 
   end 

18.   if ϕ is a c-vertex-ranking then 
19.       return L(ϕ, u); 
     end. 
 
Lemma 3.5 Let R be a set of ranks such that a weighted 
tree (T, w) has an optimal c-vertex-ranking using α = 
|R| ranks. Then the number of possible distinct visibility 
lists at any node u in Tb is at most (c + 1)α. 
Proof: Since |R| = α and 0 ≤ count(L(ϕ),  j) ≤ c for a c-
vertex-ranking ϕ and a rank j ∈ R, clearly the number of 
distinct visibility lists L(ϕ) at any node u in Tb is at most 
(c + 1)α.   

Line 1 runs in linear-time [1, 6]. Line 2 is executed O((n 
+ 1)α) = O(nα) times. Each execution of Line 2 calls 
Line 3 for procedure ranking once. Line 8 runs O(α) 
times for each leaf. Clearly Lines 9 and 10 can be done 
in constant time. Thus Lines 7-10 can be done in time 
O(αn) for all leaves. Lines 12 and 13 are executed O(n) 
times taking recursion into account. Line 14 executes 
O((c + 1)α) times and for each execution of Line 14, 
Line 15 executes O((c + 1)α) times, so Lines 16 and 17 
are executed O((c + 1)2α) times. Each execution of 
Lines 16 and 17 take O(α ) time. Clearly Lines 18 and 
19 take constant time. 
Thus procedure ranking takes O((c + 1)2α.nα ) = 
O(αc2αn) time in total. Each execution of Line 4 takes 
constant time. Therefore Lines 2-4 need O(αnc2α.nα) = 
O(αc2αnα+1) time in total. Lines 5 and 6 can be done in 
time O(αc2αnα+1). Thus the time complexity of our 
algorithm is O(αc2αnα+1). 
 
 
4 Conclusions 
We newly define a c-vertex-ranking of a weighted 
graph, and give an algorithm to find an optimal c-
vertex-ranking of a given weighted tree (T, w) in time 
O(αc2αnα+1) for any positive integer c, where n is the 
number of vertices in T and α is the number of ranks 
used.  

If α is constant then our algorithm runs in polynomial-
time. But when α is not constant then the algorithm 
does not have polynomial characteristics. In fact due to 
the lack of any local optimality it is not possible to use 
dynamic-programming algorithm in this problem. So, 
there is a chance of the problem being NP-complete for 
trees. We close the paper with the following open 
questions. 

1. Can α has constant or logarithmic upper bound ? 
2. Is the c-vertex-ranking problem NP-complete for 

weighted trees ? 
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