
Optimal c-Vertex-Ranking of Weighted Trees

Md. Abul Kashem*, Mohammad Masud Hasan*, and Sheikh Mohammed Nazrul Alam*

Abstract: A c-vertex-ranking of a graph G, for a positive
integer c, is a labeling of the vertices of G with integers such
that, for any label i, deletion of all vertices with labels > i
leaves connected components, each having at most c vertices
with label i. In this paper we newly define a c-vertex-ranking
of a weighted graph G as follows: let (G, w) be a weighted
graph, where w is an assignment of positive weights to the
vertices of G; we label the vertices of (G, w) in such a way
that it is a c-vertex-ranking of G and the sum of the maximum
weights of vertices in each rank classes is minimized. To be

precise, we want to minimize wϕ = where w∑ =
α

1 ,i iw i =

max{w(u): u∈V(G) is labeled with ranki ϕ(u) = i under a c-
vertex-ranking ϕ}, and α is the number of ranks used by ϕ. A
c-vertex-ranking ϕ is optimal if wϕ is as small as possible. We
present an algorithm to find an optimal c-vertex-ranking of a
given weighted tree (T, w) in time O(α c2α nα+1), where n is
the number of the vertices in T.

Keywords: Algorithm, c-Vertex-ranking, Tree, Visible
vertices, Weighted graph.

1 Introduction
For a positive integer c, a c-vertex-ranking of a graph G
is a labeling of the vertices with integers such that, for
any label i, deletion of all vertices with labels > i leaves
connected components, each having at most c vertices
with label i [12]. The c-vertex-ranking problem is to
find a c-vertex-ranking of a given graph using minimum
number of ranks. The problem is NP-hard in general
[12], while Zhou et al. have obtained a linear-time
algorithm to solve the c-vertex-ranking problem for
trees [12]. Then Kashem et al. have presented a
polynomial-time algorithm to solve the c-vertex-ranking
problem for partial k-trees, that is graphs of treewidth
bounded by a fixed integer k [6]. Recently, Kashem et
al. have obtained an O(n9log9n log log n) time algorithm
for solving the c-vertex-ranking problem on series-
parallel graphs [5].

An ordinary vertex-ranking of a graph G is a
labeling (ranking) of vertices of G with integers such
that any path between two vertices with the same label i
contains a vertex with label j > i [4]. Clearly an ordinary
vertex-ranking is a 1-vertex-ranking. Although the
ordinary vertex-ranking problem is NP-hard in general
[2, 9], Iyer et al. presented an O(n log n) time algorithm
to solve the ordinary vertex-ranking problem for
trees[4] , where n is the number of vertices of the input
tree. Then Schaffer obtained a linear-time algorithm by

*Department of Computer Science and Engineering,Bangladesh
University of Engineering and Technology, Dhaka 1000. Email:
kashem@cse.buet.edu

refining their algorithm and its analysis [10]. Deogun et
al. gave algorithms to solve the ordinary vertex-ranking
problem for interval graphs in O(n3) time and for
permutation graphs in O(n6) time [3]. Recently,
Newton et al. presented an O(n3) time algorithm to
solve the ordinary vertex-ranking problem for
permutation graphs [8]. Kloks et al. have obtained an
algorithm for computing the vertex-ranking number of
an asteroidal triple-free graph in time polynomial in the
number of vertices and the number of minimal
separators [7].

In this paper, we newly define a generalization of the c-

vertex-ranking on weighted graphs. Let G = (V, E) be a
graph, and let w: V → N be an assignment of positive
weights to the vertices of G. From here on we denote by
(G, w) a graph with weight w. We consider the
following c-vertex-ranking problem of the weighted
graph (G, w): for a c-vertex-ranking ϕ of G, we denote
by wϕ (i) the maximum weight of the vertices having
rank i and denote by wϕ the sum of these

maximum weights, where α is the number of ranks used
by ϕ. Let χ(G, w, α) be the minimum of w

∑ =
α

ϕ1)(i iw

ϕ among all
c-vertex-rankings ϕ using α ranks, and let χ(G, w) be
the minimum among χ(G, w, α) for all α ≥ 1. We say

7

620

10 15 5 3 11 8

 (2)

 (3) (1)

(2) (1) (3) (1) (1) (1)

(2) (1) (3) (2) (1) (2)

 (2)

 (1) (2)

(a)one optimal 2-vertex-ranking of (T,w)

(c) another optimal 2-vertex-ranking of (T,w)

Figure 1: Two optimal 2-vertex-rankings of a
weighted tree (T,w)

7

20 6

10 15 5 3 11 8

the c-vertex-ranking ϕ of G is optimal if wϕ = χ(G, w).
The optimal c-vertex-ranking can be found using ranks
≤ α for some α, 1 ≤ α ≤ n. It is possible that two
optimal c-vertex-rankings of a weighted graph (G, w)
use different number of ranks. Figure 1 depicts two
optimal 2-vertex-rankings of a weighted tree (T,w)
using three ranks, where ranks are drawn in parentheses
and weights next to the vertices.

The problem of finding an optimal c-vertex-ranking
of a graph has applications in scheduling the parallel
assembly of a complex multi-part product from its
components, where the vertices of the graph correspond
to the parts and edges correspond to assembly
operations [2, 11, 12]. In practical fields, the required
time for assembling different parts of a product is not
same, that is, the weight of each vertex is not same. So
the c-vertex-ranking problem on unweighted graphs is
not suitable for practical applications. In that case we
have to consider a weighted graph, where weight of
each vertex represents required time to complete the
task associated with the corresponding vertex. Our
proposed problem is the theoretical interpretation of this
type of practical problems.

2 Preliminaries
In this section we define some terms and present easy
observations. Let T = (V, E) be a tree with vertex set V
and edge set E. We often denote by V(T) and E(T) the
ssvertex set and the edge set of T, respectively. We
denote by n the number of vertices in T. T is a ‘free
tree’, but we regard T as a ‘rooted tree’ for convenience
sake: an arbitrary vertex of tree T is designated as the
root of T. We use the notations as: root, internal vertex,
child and leaf in their usual meaning. An edge joining
vertex u and v is denoted by (u, v). The degree of a
vertex u∈V is denoted by d(u). The maximal subtree of
sT rooted at a vertex v∈V is denoted by T(v). For a c-
vertex-ranking ϕ of tree T and a subtree T′ of T, we
denote by ϕ|T′ a restriction of ϕ to V(T′): let ϕ′ = ϕ|T′,
then ϕ′(v) =ϕ (v) for all v∈V(T′).

The number of ranks used by a c-vertex-ranking ϕ
of tree T is denoted by #ϕ. One may assume without
loss of generality that ϕ uses the consecutive integers 1,
2, 3, …, #ϕ as the ranks. A vertex v of T and its rank ϕ
(v) are visible (from the root under ϕ) if all the vertices
in the path from root to v have ranks ≤ ϕ(v). Thus the
root of T and #ϕ are always visible. We denote by L(ϕ)
the list of ranks of all visible vertices, and call L(ϕ) the
list of c-vertex-ranking ϕ of the rooted tree T. For an
integer γ we denote by count(L(ϕ), γ) the number of γ’s
contained in L(ϕ), i.e. the number of visible vertices of
rank γ. One can easily observe that count(L(ϕ), γ) ≤ c
for each rank γ. We then have the following lemma
[6,12].

Lemma 2.1 Let T be a tree, and let u be a vertex in T.
Then a vertex-labeling ϕ of T(u) is a c-vertex-ranking
of T(u) if and only if
(a) at most c vertices of the same rank are visible from

u under ϕ in T, that is, count(L(ϕ),γ) ≤ c for each
γ ∈ L(ϕ); and

(b) if u is an internal node in T and has d children v1,
v2, ... ,vd, then ϕ|T(vi) is a c-vertex-ranking of T(vi)
for each i, 1 ≤ i ≤ d.

For a list L and an integer i, we define a sublist [i ≤ L]
of L as follows:
 [i ≤ L] = {l ∈ L | i ≤ l}.
Similarly we define sublists [i < L], [L < i] and [L ≤ i] of
L. For lists L1 and L2 we use L1 ⊆ L2 and L1 ∪ L2 in their
usual meanings in which we regard L1, L2 and L1 ∪ L2
as multi-sets.

We transform the tree T to a binary decomposition tree Tb
as follows: Regard T as a rooted tree by choosing an
arbitrary node as the root, and replace every internal node
u having d children, say v1, v2, … vd with d + 1 new

nodes u1, u2,…, ud+1, such that w(ud+1) = w(u), where ui,
1 ≤ i ≤ d, is the father of ui+1 and the i-th child ui of u, and
ud+1 is a leaf of tree Tb [1, 6]. (See Fig 1). This
transformation can be done in O(n) time [1, 6]. The
resulting binary decomposition tree Tb has the following
characteristics:

T: u

v v v 1 2 d

. . .

T : b
u

u

u

u

u

v

v

v

 2

 3

 d

 d +1

 1

 2

d

 1

 Figure 2: Illustration of the binary transformation

. . .

• the number of nodes in Tb is O(n);

• for each internal node u having d children in T, there
is exactly one leaf ud+1 in Tb such that w(ud+1) = w(u).

• each leaf x in Tb corresponds to a node u in T such
that w(x) = w(u).

• each internal node x in Tb is a dummy node with no
weight.

We associate a subgraph Tx = (Vx , Ex) of T with each
node x of Tb, where
 Vx = { y| y is a leaf in Tb(x) }, and
 Ex = { (u,v) ∈ | u,v ∈ Vx }
Thus T is associated with the root of Tb.

3 Optimal c-vertex-ranking of a
weighted tree
The main result of this paper is the following theorem.

Theorem 3.1 Let R be a set of ranks such that a
weighted tree (T, w) has an optimal c-vertex-ranking
using α = |R| ranks. Then an optimal c-vertex-ranking
of a weighted tree having n vertices can be found in
time O(α c2αnα+1).

If we assume that α is a constant, we then have the
following corollary.

Corollary 3.2 An optimal c-vertex-ranking of a
weighted tree can be found in polynomial-time if α is
constant.

Let α be the minimum number of ranks needed for an
optimal c-vertex-ranking of a weighted tree (T, w). In
the remaining of this section we give an algorithm to
find an optimal c-vertex-ranking of a weighted tree (T,
w) in time O(αc2αnα+1). Our algorithm uses the
technique of ‘bottom-up-tree computation’.
We say a sequence (a1, a2, …, aα) of integers is a valid
sequence provided each ai is the weight of a vertex of
tree T, or ai = 0 (ai = 0 means that no vertex has rank i).
Since there are at most n + 1 different choices for the
value of ai, the number of valid sequences is at most (n
+ 1)α. We first assume that (a1, a2, …, aα) is a fixed
valid sequence. Our algorithm checks whether there
exists a c-vertex-ranking ϕ of (T, w) such that wϕ (i) ≤
ai. We call such c-vertex-rankings of (T, w) as good c-
vertex-rankings with respect to the valid sequence (a1,
a2, …, aα). Thus the algorithm checks all valid
sequences and finds a sequence for which wϕ =

is minimum and has at least one c-vertex-

ranking. A good c-vertex-ranking ϕ for which w
∑ =

α
1i ia

ϕ is
minimum is the desired optimal c-vertex-ranking.

Let Tb be the binary decomposition tree of T. We then
have the following two lemmas.

Lemma 3.3 Let x be a leaf in Tb that corresponds to a
vertex u in T, and let ϕ be a good c-vertex-ranking of
(T, w) with respect to a valid sequence (a1, a2, …, aα).
Then there exists a rank j, 1 ≤ j ≤ α, such that ϕ(u) = j
and w(u) ≤ aj.
Proof: For a contradiction, let u has rank ϕ(u) = j under
the c-vertex-ranking ϕ such that w(u) > aj. Then
wϕ = a1 + a2 + … + aj-1 + w(u) + aj+1 + … + aα

 > a1 + a2 + … + aj-1 + aj + aj+1 + … + aα .

So the c-vertex-ranking ϕ gives larger weight
summation than ∑α

i=1 ai, which is not acceptable.

Lemma 3.4 Let x be an internal node in Tb with two
children y and z. Let η and ψ be the c-vertex-rankings
of Ty and Tz , respectively. Let ϕ be the vertex-labeling
of Tx extended from η and ψ. Let x and y be the dummy
vertices in Tb that corresponds to a vertex u in T, and
let z be the dummy vertex in Tb corresponds to a vertex
w in T. Then L(ϕ, u) = L(η, u) ∪ [η(u) ≤ L(ψ, w)].
Proof: Here η = ϕ⏐Ty and ψ =ϕ⏐Tz and ϕ (u) = η(u).
Then clearly
 L(ϕ, u) = L(η, u) ∪ [η (u) ≤ L(ψ, w)].
We then have the following algorithm for c-vertex-
ranking of a weighted tree (T, w).

Procedure c_vertex ()
 begin
1. decompose the tree T to a binary decomposition

tree Tb, and let r be the root of Tb;
2. for each valid sequence (a1, a2, …, aα) do
 begin
3. ranking(Tb(r), a1, …, aα);
4. check whether there exists a c-vertex-ranking

at the root;
 end
5. find the optimal sequence for which is

minimum and has a c-vertex-ranking;
∑=

α
1i ia

6. find a c-vertex-ranking of T having the optimal
sequence;

 end

Procedure ranking(Tb(x), a1, a2, …, aα)
 begin
7. if x is a leaf then

begin
 let u be a vertex in T that corresponds to x in Tb;
8. for each ai ≥ w(u) do
 begin
9. a trivial ranking ϕ(u) ← i;
10. L(ϕ, u) = {i};
 end

end
else
begin

11. let y and z be the two children of x; let x and y be
the dummy vertices in Tb that corresponds to a
vertex u in T, and let z be the dummy vertex in
Tb corresponds to a vertex w in T.

12. ranking(Tb(y), a1, a2, …, aα);
13. ranking(Tb(z), a1, a2, …, aα);
14. for each visibility list L(η, u) do
15. for each visibility list L(ψ, w) do
 begin
16. find a visibility list L(ϕ, u) from L(η, u)

and L(ψ, w) using Lemma 3.4;

17. check whether ϕ is a c-vertex-ranking by
Lemma 2.1;

 end
 end

18. if ϕ is a c-vertex-ranking then
19. return L(ϕ, u);
 end.

Lemma 3.5 Let R be a set of ranks such that a weighted
tree (T, w) has an optimal c-vertex-ranking using α =
|R| ranks. Then the number of possible distinct visibility
lists at any node u in Tb is at most (c + 1)α.
Proof: Since |R| = α and 0 ≤ count(L(ϕ), j) ≤ c for a c-
vertex-ranking ϕ and a rank j ∈ R, clearly the number of
distinct visibility lists L(ϕ) at any node u in Tb is at most
(c + 1)α.

Line 1 runs in linear-time [1, 6]. Line 2 is executed O((n
+ 1)α) = O(nα) times. Each execution of Line 2 calls
Line 3 for procedure ranking once. Line 8 runs O(α)
times for each leaf. Clearly Lines 9 and 10 can be done
in constant time. Thus Lines 7-10 can be done in time
O(αn) for all leaves. Lines 12 and 13 are executed O(n)
times taking recursion into account. Line 14 executes
O((c + 1)α) times and for each execution of Line 14,
Line 15 executes O((c + 1)α) times, so Lines 16 and 17
are executed O((c + 1)2α) times. Each execution of
Lines 16 and 17 take O(α) time. Clearly Lines 18 and
19 take constant time.
Thus procedure ranking takes O((c + 1)2α.nα) =
O(αc2αn) time in total. Each execution of Line 4 takes
constant time. Therefore Lines 2-4 need O(αnc2α.nα) =
O(αc2αnα+1) time in total. Lines 5 and 6 can be done in
time O(αc2αnα+1). Thus the time complexity of our
algorithm is O(αc2αnα+1).

4 Conclusions
We newly define a c-vertex-ranking of a weighted
graph, and give an algorithm to find an optimal c-
vertex-ranking of a given weighted tree (T, w) in time
O(αc2αnα+1) for any positive integer c, where n is the
number of vertices in T and α is the number of ranks
used.

If α is constant then our algorithm runs in polynomial-
time. But when α is not constant then the algorithm
does not have polynomial characteristics. In fact due to
the lack of any local optimality it is not possible to use
dynamic-programming algorithm in this problem. So,
there is a chance of the problem being NP-complete for
trees. We close the paper with the following open
questions.

1. Can α has constant or logarithmic upper bound ?
2. Is the c-vertex-ranking problem NP-complete for

weighted trees ?

References
[1] H. L. Bodlaender, Polynomial algorithms for graph

isomorphism and chromatic index on partial k-
trees, J. Algorithms, 11 (1990), pp. 631-633.

[2] H. L. Bodlaender, J. S. Deogun, K. Jansen, T. Kloks,
D. Kratsch, H. Mullar, Zs Tuza, Rankings of
graphs, SIAM Journal on Discrete Math. 21 (1998),
pp. 168-181.

[3] J. S. Deogun, T. Kloks, D. Kratsch, H. Mullar, On
vertex ranking for permutation and other graphs,
Proc. 11th Ann. Symp. on Theoretical Aspects of
Computer Science, Lecture Notes in Computer
Science, Vol. 775, Springer-Verlag, 1994, pp.747-
758.

[4] A. V. Iyer, H. D. Ratliff, G.Vijayan, Optimal nodes
ranking of trees, Information Processing Letters 28
(1988) 225-229.

[5] M. A. Kashem , M. Ziaur Rahman , An efficient
algorithm for optimal c-vertex-ranking of series-
parallel graphs, Proc. of the 2nd. Int. Conf. on
Computer and Information
Technology(ICCIT′99)(1999), pp.309-314

[6] M. A. Kashem, X. Zhou, T. Nishizeki, Algorithms
for generalized vertex-ranking of partial k-trees,
Theoretical Computer Science 240 (2000), pp. 407-
427.

[7] T.Kloks, H.Muller, C.K. Wong , Vertex ranking of
asteroidal triple-free graphs, Proc. of the 7th Int.
Symp. on Algorithms and Computation
(ISSAAC′96), Lecture Notes in Computer Science,
1178(1996), pp.178-182.

[8] A. H. Newton, M. A. Kashem, An efficient
algorithm for optimal vertex-ranking of
permutation graphs, Proc. 2nd. Int. Conf. on
Computer and Information Technology(ICCIT99)
(1999), pp. 315-320.

[9] A. Pothen, The Complexity of optimal elimination
trees, Technical Report CS-88-13, Pennsylvania
State University, USA, 1988.

[10] A. A. Schaffer, Optimal node ranking of trees in
linear time, Information Processing Letters 33
(1989/90) pp. 91-96.

[11] X. Zhou, M. A. Kashem, T. Nishizeki, Generalized
edge-ranking of trees, IEICE Trans. on
Fundamentals, E81-A.No.2 (1998), pp .

[12] X. Zhou, N. Nagai, T. Nishizeki, Generalized
vertex-ranking of trees, Information Processing
Letters 56 (1995), pp. 321-328.

	Optimal c-Vertex-Ranking of Weighted Trees
	Md. Abul Kashem*, Mohammad Masud Hasan*, and Sheikh Moham
	Abstract: A c-vertex-ranking of a graph G, for a positive integer c, is a labeling of the vertices of G with integers such that, for any label i, deletion of all vertices with labe
	1 Introduction
	*Department of Computer Science and Engineering,Bangladesh U

	2 Preliminaries

	Corollary 3.2 An optimal c-vertex-ranking of a weighted tree can be found in polynomial-time if (is constant. (
	References

