
 58

Chapter 4

The Genetic search scheme

This section introduces different types of evolutionary methodology. Along with the new

approach, the effects of the genetic operator crossover upon the MCE encoded ANNs are

discussed. The algorithm to realize the PST is also presented.

4.1 Evolutionary Approaches

Evolutionary algorithm (EA) is an umbrella term used to describe computer based

problem solving systems which use computational models of evolutionary processes as

key elements in their design and implementation. A variety of EAs have been proposed.

The major ones are: genetic algorithms, evolutionary programming, evolution strategies

and genetic programming. They all share a common conceptual base of simulating the

evolution of individual structures via processes of selection, mutation, and reproduction

as depicted in Figure 4.1. The processes depend on the perceived performance of the

individual structures as defined by an environment. In brief, EA is a system which

incorporates aspects of natural selection or survival of the fittest. Although simplistic

from a biologist's viewpoint, these algorithms are sufficiently complex to provide robust

and powerful adaptive search mechanisms.

 59

Figure 4.1: Problem solution using EA.

4.1.1 Genetic Algorithm

The genetic algorithm (GA) is a model of machine learning which derives its behavior

from a metaphor of the processes of evolution in nature. This is done by the creation

within a machine of a population of individuals represented by chromosomes, in essence

a set of character strings that are analogous to the base-4 chromosomes that is seen in our

own DNA. The individuals in the population then go through a process of evolution.

At the molecular level what occurs is that a pair of chromosomes bump into one another,

exchange chunks of genetic information and drift apart. This is the recombination

operation, which GA generally refer to as crossover because of the way that genetic

material crosses over from one chromosome to another.

The crossover operation happens in an environment where the selection of who gets to

mate is a function of the fitness of the individual, i.e. how good the individual is at

competing in its environment. Mutation also plays a role in this process, although how

important its role is continues to be a matter of debate. When the GA is implemented it is

usually done in a manner that involves the following cycle: evaluate the fitness of all of

the individuals in the population. Create a new population by performing operations such

as crossover, fitness-proportionate reproduction and mutation on the individuals whose

fitness has just been measured. Discard the old population and iterate using the new

population. One iteration of this loop is referred to as a generation. There is no

theoretical reason for this as an implementation model. Indeed, one does not see this

 60

punctuated behavior in populations in nature as a whole, but it is a convenient

implementation model.

4.1.2 Evolutionary Programming

Evolutionary programming (EP), originally conceived by Lawrence J. Fogel in 1960, is a

stochastic optimization strategy similar to GAs, but instead places emphasis on the

behavioral linkage between parents and their offspring, rather than seeking to emulate

specific genetic operators as observed in nature. EP is similar to evolution strategies (ES),

although the two approaches developed independently. It should be pointed out that EP

typically does not use any crossover as a genetic operator [12].

There are two important ways in which EP differs from GA. First, the typical GA

approach involves encoding the problem solutions as a string of representative tokens, the

genome. In EP, the representation follows from the problem. A neural network can be

represented in the same manner as it is implemented, for example, because the

mutation operation does not demand a linear encoding. Second, the mutation operation

simply changes aspects of the solution according to a statistical distribution which

weights minor variations in the behavior of the offspring as highly probable and

substantial variations as increasingly unlikely.

The main differences between Evolution strategy (ES) and EP are:

a) Selection: EP typically uses stochastic selection via a tournament. Each trial solution

in the population faces competition against a preselected number of opponents and

receives a "win" if it is at least as good as its opponent in each encounter. Selection

then eliminates those solutions with the least wins. In contrast, ES typically uses

deterministic selection in which the worst solutions are purged from the population based

directly on their function evaluation.

b) Recombination: EP is an abstraction of evolution at the level of reproductive

populations (i.e., species) and thus no recombination mechanisms are typically used

because recombination does not occur between species. In contrast, ES is an abstraction

 61

of evolution at the level of individual behavior. When self-adaptive information is

incorporated this is purely genetic information (as opposed to phenotypic) and thus

some forms of recombination are reasonable and many forms of recombination

have been implemented within ES.

4.1.3 Evolution Strategy

Evolution strategies (ES) were invented to solve technical optimization problems. It is

more or less similar to EP. Self-adaptation within ES depends on randomness, population

size, cooperation and deterioration [21], [40].

4.1.4 Genetic Programming

Genetic programming (GP) is the extension of the genetic model of learning into the

space of programs. That is, the objects that constitute the population are not fixed-

length character strings that encode possible solutions to the problem at hand, they are

programs that, when executed, are the candidate solutions to the problem. These

programs are expressed in genetic programming as parse trees, rather than as lines of

code.

In GP the crossover operation is implemented by taking randomly selected subtrees in the

individuals (selected according to fitness) and exchanging them. It should be pointed out

that GP usually does not use any mutation as a genetic operator.

4.2 Crossover on MCE

This subsection illustrates the rules and effects of the genetic operator crossover on the

modified CE.

While growing of an ANN from a PST, each cell transformed to a neuron when its

reading head ends at an END symbol. This necessarily means that for each neuron there

must have an END symbol, which is a leaf of the PST. In fact, the number of ENDs in a

 62

PST is equal to or greater than (some neurons of corresponding END leaves may be

removed by MRG operation) the number of neurons in the ANN. To avoid the risk of

changing the structure of ANN drastically by crossover effect, crossover is allowed on

last level (leaf) or second last level. That is, the roots of the two subtrees chosen form a

pair of CE for crossover must have all children as END or no children. If the root of a

subtree is a binary symbol (i.e. PAR or SEQ) it has two children both of END symbols. If

the root is a unary symbol (i.e. CUT or MRG) it has single child END. If the root is END

itself, it has no children. But both of the subtrees chosen for exchange cannot be same

since in that case the crossover would have no effect. The following table shows all

possible combinations of crossover and their effects on the genotypes of ANNs.

Table 4.1: Effects of crossover on CE.

Replaced by Effects of

Crossover PAR SEQ CUT MRG END

PAR NC OCN CD, ND OC, ND ND

SEQ OCN NC CD, ND OC, ND ND

CUT CA, NA CA, NA OC or NC OC, ND∗ CA

MRG OC, NA OC, NA OC, NA∗ NC or OCN OC, NA∗

To
 b

e
re

pl
ac

ed

END NA NA CD OC, ND∗ NC

Here,

NC ≡ no change in the architecture of corresponding ANNs

NA ≡ node addition

ND ≡ node deletion

CA ≡ connection addition

CD ≡ connection deletion

OC ≡ new orientation of connection

OCN ≡ new orientation of both connection and node
∗ effect may or may not takes place, depends on orientation of connections and

 the parameter of the corresponding symbol

 63

It is clear from the above table that all sorts of modifications of ANNs (for example

addition and / or deletion of node and / or connection) can be happened from crossover.

Since crossover is allowed only at the lowest level or immediate above it, massive

changes in the architecture at a time cannot occur.

One has to put across the rules for applying the genetic operator crossover on the

modified CE so that its properties are not destroyed even after crossover operation. First

thing to remember is that crossover cannot be applied on the roots of PSTs, it must be

applied on two different subtrees. If these two subtrees are same crossover would have no

effect. When applying crossover between two cellular encodings CE1 and CE2 by

exchanging two random subtrees ST1 (from CE1) and ST2 (from CE2), the following

three situations may arise.

i) None the parents of ST1 and ST2 is PAR.

ii) One of the parents of ST1 and ST2 is PAR.

iii) Both the parents of ST1 and ST2 are PAR.

In case (i), crossover is just applied accordingly.

In case (ii), let, without loss of generality, the parent of ST1 is PAR and the parent of ST2

is not PAR. The sub-cases can occur as follows:

a) Both the roots of ST1, ST2 are PAR

b) Both the roots of ST1, ST2 are not PAR

c) The root of ST1 is PAR, the root of ST2 is not PAR

d) The root of ST1 is not PAR, the root of ST2 is PAR

In sub-case (a) crossover is not applied. For other sub-cases it is applied accordingly.

After crossover is done, the ordering described in Property 1 is established among the

children of the parent of ST2 in CE1.

In case (iii), the sub-cases can occur as follows:

e) Both the roots of ST1, ST2 are PAR

f) Both the roots of ST1, ST2 are not PAR

g) The root of ST1 is PAR, the root of ST2 is not PAR

h) The root of ST1 is not PAR, the root of ST2 is PAR

 64

In sub-case (e) crossover is not done. For other sub-cases, crossover is applied

accordingly but the ordering described in Property 1 is established among the children of

both the parent of ST2 in CE1 and the parent of ST1 in CE2.

4.3 CE to DE Conversion

Input: the PST to be executed.

Output: the matrix representation (direct encoding) of the ANN.

m ≡ number of input nodes

n ≡ number of output nodes

N ≡ maximum number of hidden nodes allowed in the ANN

M ≡ a matrix with m + N rows and N + n columns; M[i, j] = 1 means that there is a

connection from i-th node to j-th node, M[i, j] = 0 means that there is no connection

from i-th node to j-th node

Initialize a FIFO with the root of the PST as the only entry

Initialize all the entries of the matrix M to 0

while (head of the FIFO ≠ NULL)

case (head of the FIFO)

PAR: Copy the inputs and outputs of the current i-th entry (cell) in a new

j-th entry (cell) of the matrix. Enter both of the entries (cells) i, j at the end

of the FIFO in random order.

SEQ: Remove the outputs of the current i-th entry and copy these to a new

j-th entry of the matrix; Set M[i, j] = 1. Enter entry i at the end of the

FIFO, then enter entry j in the FIFO.

CUT x: Let the x-th input link to the current entry i is j. Set M[j, i] = 0.

Place the entry i at the end of the FIFO.

MRG x: Let the x-th input link to the current entry i is j. If j-th entry has

only one output link and its reading head not yet end, enter the current

 65

entry i at the end of the FIFO. Nothing changes in the matrix (this action is

like WAIT). Otherwise, set M[j, i] = 0 and copy all the input links into

entry j to the entry i. Also if j-th entry has no more output link, remove all

the input links into entry j. Place entry i at the end of the FIFO.

END: Do nothing. Purge the reading head of the cell and convert it to a

node of ANN.

end case

end while

The number of symbols k executed by the algorithm is the number of symbols present in

the PST and k = O(m + N + n). Let, PAR, SEQ and MRG handle on an average l number

of connections (entries of the matrix) that depends on O(m + N). So in the worst case, the

cost for executing the above algorithm is O(lk).

4.4 The Evolutionary System

The major steps of the evolutionary system proposed in this work are depicted in the

Figure 4.2, which are explained further as follows [6], [12], [19], [33]:

1. Generate initial population (program symbol trees) of M networks randomly.

The initial number of hidden nodes, connection density and weights for each

ANN are uniformly distributed at random within certain ranges.

 66

Random initial
population

Initial partial
training

Rank NNs from the
best to the worst

Best NN or
Maximum

generation?

Use roulette wheel
selection, apply

crossover

no

yes

Further training

Partially train each
child, replace better

child to its parent

Figure 4.2: Major steps of the evolutionary system.

2. Partially train each network in the population for a certain number of epochs

K0, which is user specified, using normal backpropagation [52].

3. Rank the networks in the population according to their error values, from the

best to the worst.

4. If the best network found is acceptable or the maximum number of

generations has been reached, stop the evolutionary process and go to the step

7. Otherwise continue.

 67

5. Use the rank based selection (the roulette wheel selection [10]) to select

parents for crossover operations to obtain offspring networks.

6. Partially train each child for K1 epochs using normal BP. Here, K1 is a user

specified parameter. In the evolution if an offspring is better than its parent it

will replace the parent. Go to step 3.

7. After the evolutionary process, train the best network further on the combined

training and validation set until it converges.

 68

Chapter 5

Experimental Studies

Machine learning investigates the mechanisms by which knowledge is acquired through

experience. Databases with millions of records and thousands of fields are now common

in business, medicine, engineering, and the sciences. In order to evaluate the ability of the

approach in evolving ANN, it has been applied to the database of some real-world

problems. This section portrays the experimental references, setup, results and

comparisons with other works.

5.1 Data Sets Applied

The algorithm is applied on four real-world problems in the medical domain, i.e., the

breast cancer problem, the diabetes problem, the heart disease problem, and the thyroid

problem. All data sets were obtained from the machine learning benchmark repository

cited at the Department of Information and Computer Science of University of California,

Irvine.

This is a repository of databases, domain theories and data generators that are used by the

machine learning community for the empirical analysis of machine learning algorithms.

A large collection of data sets is accessible via anonymous FTP at ftp.ics.uci.edu

[128.195.1.1] in directory "/pub/machine-learning-databases" or via web browser at

http://www.ics.uci.edu/~mlearn/ MLRepository.html. The Knowledge Discovery in

Databases (KDD) Archive here encompasses a wide variety of data types, analysis tasks,

and application areas. The primary role of this repository is to serve as a benchmark

tested to enable researchers in knowledge discovery and data mining to scale existing and

 69

future data analysis algorithms to very large and complex data sets. This archive is

supported by the Information and Data Management Program at the National Science

Foundation, and is intended to expand the current UCI Machine Learning Database

Repository to datasets that are orders of magnitude larger and more complex. An

important file to read regarding the repository is the README file. It contains an overall

description of the repository. Another file, SUMMARY-TABLE, contains a table of

some of the databases. Each database is characterized by a fixed set of attributes. The

construction of this repository is an on-going process. The majority of the entries in the

repository were contributed by machine learning researchers outside of UCI.

Here the data format followed in Proben1 is used. Proben1 is a collection of 12 learning

problems consisting of real data. The data files all share a single simple common format.

Along with the data comes a technical report describing a set of rules and conventions for

performing and reporting benchmark tests and their results. It is accessible via

anonymous FTP on ftp.cs.cmu.edu [128.2.206.173] as/afs/cs/project/connect/bench/

contrib/prechelt/proben1.tar.gz and also on ftp.ira.uka.de as /pub/neuron/proben1.tar.gz.

The file is about 1.8 MB and unpacks into about 20 MB.

The four medical diagnosis problems used have the following common characteristics

[34].

• The input attributes used are similar to those a human expert would use in order to

solve the same problem.

• The outputs represent either the classification of a number of understandable classes

or the prediction of a set of understandable quantities.

• In practice, all these problems are solved by human experts.

• Examples are expensive to get. This has the consequence that the training sets are

not very large.

• There are missing attribute values in the data sets.

These data sets represent some of the most challenging problems in the ANN and

machine learning field. They have a small sample size of noisy data.

 70

5.1.1 Heart Disease

This Heart directory contains 4 databases concerning heart disease diagnosis. The data

was collected from the four following locations:

1. Cleveland Clinic Foundation (cleveland.data)

2. Hungarian Institute of Cardiology, Budapest (hungarian.data)

3. V.A. Medical Center, Long Beach, CA (long-beach-va.data)

4. University Hospital, Zurich, Switzerland (switzerland.data)

The first set which comes from the Cleveland Clinic Foundation and was supplied by

Robert Detrano of the V.A. Medical Center, Long Beach, CA is used. The purpose of the

data set is to predict the presence or absence of heart disease given the results of various

medical tests carried out on a patient. This database contains 13 attributes, which have

been extracted from a larger set of 75. The database originally contained 303 examples.

There are two classes: presence and absence (of heart disease). This is a reduction of the

number of classes in the original data set in which there were four different degrees of

heart disease. The input attributes are discrete on a scale 0 - 1 (real) and output is 0 or 1

(binary).

5.1.2 Diabetes

This data set was originally donated by Vincent Sigillito from Johns Hopkins University

and was constructed by constrained selection from a larger database held by the National

Institute of Diabetes and Digestive and Kidney Diseases. All patients represented in this

data set are females of at least 21 years old and of Pima Indian heritage living near

Phoenix, AZ. The problem posed here is to predict whether a patient would test positive

for diabetes according to World Health Organization criteria given a number of

physiological measurements and medical test results. This is a two class problem with

class value one interpreted as “tested positive for diabetes.” There are 500 examples of

class 1 and 268 of class 2. There are eight attributes for each example. The data set is

rather difficult to classify. The so-called “class” value is really a binarised form of

another attribute which is itself highly indicative of certain types of diabetes but does not

 71

have a one to one correspondence with the medical condition of being diabetic. Although

there are no missing values in this dataset according to its documentation, there are

several senseless 0 values. These most probably indicate missing data. Nevertheless, this

data are handled as if it was real, thereby introducing some errors (or noise, if you want)

into the dataset. The input attributes are discrete on a scale 0 - 1 (real) and output attribute

is binary valued.

5.1.3 Thyroid

This data set comes from the “ann” version of the “thyroid disease” data set from the UCI

ML repository. Original donor is Randolf Wernero btained from Daimler-Benz.Two files

were provided. “anntrain.data” contains 3772 learning examples. “ann-test.data” contains

3428 testing examples. There are 21 (15 attributes are binary, 6 attributes are continuous)

attributes for each example. The purpose of the data set is to determine whether a patient

referred to the clinic is hypothyroid. Therefore three classes are built: normal (not

hypothyroid), hyperfunction and subnormal functioning. Because 92 percent of the

patients are not hyperthyroid, a good classifier must be significantly better than 92%. The

input attributes are discrete on a scale 0 - 1 (real) and the 3 output attributes (1, 2, or 3)

are encoded with a 1-of-3 encoding (1 0 0, 0 1 0, or 0 0 1).

5.1.4 Breast Cancer

The breast cancer data set was originally obtained from Dr. William H. Wolberg

(physician) at the University of Wisconsin Hospitals, Madison, Wisconsin, USA. The

purpose of the data set is to classify a tumor as either benign or malignant based on cell

descriptions gathered by microscopic examination. The data set contains nine attributes

and 699 examples of which 458 are benign examples and 241 are malignant examples.

There are 9 input attributes, all discrete on a scale 0 - 1 (real) and 1 binary output

attribute.

 72

5.2 Experimental Setup

All the data sets used have been partitioned into three sets: a training set, a validation set,

and a testing set. The training set is used to train ANN by back propagation, the testing

set is used to evaluate the performance of the system. The validation set is not used in this

work. In the following experiments, according to Proben1, each data set is partitioned as

follows.

• For the breast cancer data set, the first 350 examples are used for the training

set, the following 175 examples for the validation set, and the final 174

examples for the testing set.

• For the diabetes data set, the first 384 examples are used for the training set, the

following 192 examples for the validation set, the final 192 examples for the

testing set.

• For the heart disease data set, the first 152 examples are used for the training set,

the following 76 examples for the validation set, and the final 75 examples for

the testing set.

• For the thyroid data set, the first 3600 examples in “ann-train data” are used for

the training set, the next 1800 for the validation set, and the rest 1800 for the

testing set.

It, however, should be kept in mind that such partitions do not represent the optimal ones

[37]. As said before, the input attributes of the diabetes data set and heart disease data set

are rescaled to between 0.0 and 1.0 by a linear function. The output attributes of all the

problems are encoded using a 1-of-output representation for classes. The winner-takes-all

method is used here, i.e., the output with the highest activation designates the class. There

are some control parameters which need to be specified by the user. Most parameters

used in the experiments are set to be the same: the population size (20), the learning rate

(0.25), initial weight range -0.5 to +0.5 etc. These parameters were chosen after some

limited preliminary experiments. They were not meant to be optimal. Actually, enormous

amount of experiments are needed for the parameter tuning and the tuned parameter may

be sub-optimal since parameters are independent and interacts in very complex ways.

 73

This is true regardless how the parameters are tuned and is based on the observation that

a run on an evolutionary algorithm is intrinsically dynamic and adaptive process [1].

In this approach, the selection mechanism used is the elitist roulette wheel scheme, which

is described in chapter 2 more details. The error function (inverse of fitness) E is

()∑∑
= =

−
−

=
T

t

n

i
tiZtiY

nT
OOE

1 1

2
),(),(

.
minmax.100

where the Omax and Omin are the maximum and minimum values of output coefficients in

the problem representation, n is the number of output nodes, T is the number of patterns

and Y(i,t), Z(i,t) are actual and desired outputs of node for pattern. The values of Omax and

Omin are found from the input data set before the evolution starts. The equation above was

suggested by Prechelt [34] to make the error measure less dependent on the size of the

validation set and the number of output nodes. Hence a mean squared error percentage is

adopted. In this thesis, training error and testing error rate refer two different measures.

Training error means the value calculated while training through the error function

described above. And testing error rate is the percentage of testing input patterns that are

incorrectly classified.

5.3 Results

The program is run for different epochs and different generations. Their ranges vary from

one data set to another set. The following table summarizes the results. The Table 5.1

shows average values, standard deviations and best results for number of connections,

number of hidden nodes, number of generations and epochs needed, training and testing

errors of the ANN evolved. Here the best result (* marked) is for the ANN with the least

testing error rate. For the diabetes problem, it has been found in one generation for 200

epochs. So, total time (epoch × generation × ANN) is 200 × 1 × 20 = 4000 only. Average

number of epochs needed is 127.96 and average number of generations needed is 9.99.

On average an ANN has 6 hidden nodes and 56.7 connections with testing error rate is

0.25108. For thyroid, heart disease, breast cancer problem total time needed is 70000,

13000 and 200 respectively. These are much less than that of the experiments done by

others as shown in the next section.

 74

Table 5.1: Experimental outcomes (* ANN with the least testing error rate)

For the diabetes problem the following trend of generation versus error given in Figure

5.1 is found, error is decreased as generation is increased up to certain level. Generation

versus connections in Figure 5.2 shows that number of connection is minimized around

generation 3. In Figure 5.3, epoch versus error for both generation 5 and 12 are shown.

Figure 5.4 indicates, error is minimized when time is near 30000.

 75

Figure 5.1: Generation Vs Error for diabetes.

Figure 5.2: Generation Vs Connections for diabetes.

Figure 5.3: Epoch Vs Error for diabetes.

 76

Figure 5.4: Time Vs Error for diabetes.

For the thyroid problem, as depicted in Figure 5.5, it is found the following trend of

generation versus error, error is decreased as generation is increased up to certain level.

Generation versus connections in Figure 5.6 shows that number of connection is

minimum around generation 3. In Figure 5.7, epoch versus error for both generation 1

and 7 are shown. Figure 5.8 indicates, error is minimized when time is near 27000.

Figure 5.5: Generation Vs Error for Thyroid.

 77

Figure 5.6: Generation Vs Connections for Thyroid.

Figure 5.7: Epoch Vs Error for Thyroid.

Figure 5.8: Time Vs Error for Thyroid.

 78

For the heart disease problem the following trend of generation versus error graph in

Figure 5.9 is found, error is decreased as generations is increased up to certain level.

Generation versus connections in Figure 5.10 shows that number of connection is

maximizing around generation 45. In Figure 5.11, epoch versus error for both generation

20 and 60 are shown. Figure 5.12 indicates, error is minimized when time is near 26000.

Figure 5.9: Generation Vs Error for heart disease.

Figure 5.10: Generation Vs Connections for heart disease.

 79

Figure 5.11: Epoch Vs Error for heart disease.

Figure 5.12: Time Vs Error for heart disease.

For the breast cancer problem the following trend of generation versus error in Figure

5.13 is found, error is decreased as generation is increased up to certain level. Generation

versus connections in Figure 5.14 shows that number of connection is maximizing around

generation 40. In Figure 5.15, epoch versus error for both generation 1 and 10 are shown.

Figure 5.16 indicates error is minimized when time is near 22000.

 80

Figure 5.13: Generation Vs Error for breast cancer.

Figure 5.14: Generation Vs Connections for breast cancer.

 81

Figure 5.15: Epoch Vs Error for breast cancer.

Figure 5.16: Time Vs Error for breast cancer.

Here is now given an example of ANN, both cellular encoding and direct encoding. It is

taken the best (in term of least error rate) ANN found in breast cancer data set. The CE of

this ANN is: PAR, PAR, SEQ, CUT 30, CUT 21, CUT 22, MRG 20, END, PAR, END,

END, END, END. The program symbol tree is shown in Figure 5.17.

 82

Figure 5.17: PST of the best ANN found in breast cancer problem.

The corresponding direct encoding is shown in Figure 5.18 too.

Figure 5.18: DE of the best ANN found in breast cancer problem.

5.4 Comparison with other works

Direct comparison with other evolutionary approaches to designing ANN is very difficult

due to the lack of such results. Instead, the best and latest results available in the

literature, regardless of whether the algorithm used was an evolutionary, a BP or a

statistical one, are used in the comparison. It is possible that some papers which should

have been compared with were overlooked. However, the aim of this thesis is not to

compare this algorithm exhaustively with all other algorithms.

 83

First, the results are compared with EPNet [62] although the data sets used for some

problems may differ. For example, for the heart disease problem EPNet does not used 27

disputable patterns, but here is used. For heart disease, thyroid and breast cancer

problems, the partitions into training and testing data sets are not matched too. Yet, one

can have a rough comparison among the experimental outcomes as shown in Table 5.2

through Table 5.5. Here the best result (* marked) found in this approach is for the ANN

with least testing error rate. Whereas the best counted in EPNet was based on

compactness of the evolved ANN.

Although EPNet can evolve very compact ANN which generalizes well, they come with

the cost of additional computation time in order to perform search. The total time needed

in the breast cancer problem, for example, by EPNet was very high. It could require

roughly 109,000 epochs for a single run [62] whereas it is on average around 14,000 in

this approach. Although, the actual time was less since few runs reached the maximal

number of generations. Similar estimations can be applied to other problems.

Table 5.2: Comparison with EPNet for heart disease problem.

Table 5.3: Comparison with EPNet for diabetes problem.

 84

Table 5.4: Comparison with EPNet for Thyroid problem.

Table 5.5: Comparison with EPNet for breast cancer problem.

It is also compared with the results of different other works (L Prechelt, W. Schiffman, R.

Miranda, K. Bennet, O. L. Mangasarian, R. Werner , R. Reed, A. Roy, S. Govil etc). The

following tables (Table 5.6 through Table 5.9) show them concisely. Here the

evolutionary system proposed beats all other systems except for the thyroid data set as

shown in Table 5.9.

For the heart disease problem, Table 5.6 shows results from this algorithm and other

neural and non-neural algorithms. The GM algorithm [3] is used to construct RBF

networks. It produced a RBF network of 24 Gaussians with 18.18% testing error. Bennet

and Mangasarian [30] reported a testing error rate of 16.53% with their MSM1 method,

25.92% with their MSM method, and about 25% with BP, which is much worse than the

worst ANN evolved here. The best manually designed ANN achieved 14.78% testing

 85

error [34], which is worse than the best result of this approach, 5.33%. Again, Panayiota

et. al. [39] found 16.8% training error rate and 27.4% testing error rate by their enhanced

guided annealing technique.

Table 5.6: Comparison with other works for heart disease problem.

For the breast cancer problem, Prechelt [34] reported results on manually constructed

ANN (denoted as HDANN’s) after testing a number of different ANN architectures.

Table 5.7 shows that this approach found better ANN with error rate 0.5714% whereas it

is 1.149% with HDANN. Again, Panayiota et.al. [39] found 2.35% training error rate and

4.7% testing error rate by their enhanced guided annealing technique. Ravi et. al. got it

upto 95.5% accuracy level by their ALAR method [45].

Table 5.7: Comparison with other works for breast cancer problem.

The diabetes problem is one of the most challenging problems in ANN and machine

learning due to its relatively small data set and high noise level. In the medical domain,

data are often very costly to obtain. It would be unreasonable if an algorithm relies on

more training data to improve its generalization. Table 5.8 compares the result with that

one produced by Prechelt [34]. He found an ANN with eight hidden node which achieved

the testing error rate of 0.2135 (21.35%), while ANN with the testing error rate of 0.2083

(20.83%) is achieved here outperforming his results.

 86

Table 5.8: Comparison with other works for diabetes problem.

Schiffmann et al. [59] tried the thyroid problem using a 21-20-3 network. They found that

several thousand learning passes were necessary to achieve a testing error rate of 2.6%

for this network. They also used their genetic algorithm to train multilayer ANN on the

reduced training data set containing 713 examples. They obtained a network with testing

error rate 2.5%. These results are slightly better than those generated by the ANN

evolved by this approach. Table 5.9 summarizes the above results.

Table 5.9: Comparison with other works for thyroid problem.

 87

Chapter 6

Conclusion & Future Research

6.1 Concluding Remarks

This thesis presents a new indirect encoding scheme, known as MCE, based on CE for

evolving feedforward ANNs. The salient feature MCE is that it does not permutation

problem of conventional crossover operator of Gas. A close and complete set of program

symbols is chosen to generate the PSTs, i.e. the genotypes of ANNs. Some symbols of

CE are excluded and the functionalities of other symbols are changed. New restrictions

are also imposed on their appearances in the PSTs. These upgradations of CE result a

permutation problem free encoding.

Consequently, one can employ the genetic operator crossover on the genotypes of ANNs

in the evolutionary system, that is, the difficulties in producing highly fit offspring would

no longer exist with crossover operators. Here, crossover tries all kinds of evolutions, i.e.

deletion or addition of nodes and connections. Close behavioural link between the parents

and their offspring is maintained by adopting a number of techniques. For example,

partial training is always employed after each architectural change in order to reduce the

behavioural disruption to an individual. To reduce the drastic change of architecture (and

behaviour) from parents to their children, crossover is allowed at the lower levels of PSTs

with higher probability. A hidden node is not added to an existing ANN at random, but

through splitting an existing node by means of an additional program symbol to its PST.

The proposed genetic search algorithm in this paper implements these strategies which

imply significant improvement is the reduction of the number of user specified

parameters. Since this approach searches a much larger space than that searched by most

 88

other constructive or pruning algorithms and thus seems to require longer computation

time, but it outperforms the time needed in other contemporary works.

6.2 Future Directions

In this subsection, four directions are given to extend the research followed in this thesis.

a) One of the important goals of the contemporary research going on the evolutionary

artificial neural network is to reduce evolution time. In the evolutionary search training

algorithm is not applied directly on the genotypes of the population. Rather a conversion

of the cellular encoding to direct encoding is performed to learn current population

through backpropagation. If it can be saved this conversion time by incorporating directly

the cellular encodings with the training phase, then significant improvement in the

generation time will be gained. Researchers are still waiting for an efficient training

algorithm directly applicable over cellular encoded neural networks.

b) Another future research direction can be reducing the number of user defined

parameters. Not only that, evolutionary parameters can be made adaptive with the search

performance. Eiben et.al. [1] describe in details why it is necessary. As mentioned earlier,

parameter tuning by hand is a common practice in evolutionary computation. Typically,

one parameter is tuned at a time, which may cause some sub-optimal choices, since

parameters are not independent and they often interact in a complex way. Simultaneous

tuning of more parameters, however, leads to an enormous amount of experiments. Also,

it is intuitive that different values of parameters might be optimal at different stages the

dynamic evolutionary process. Hence adaptive (with respect to search stages /

performances) parameters may lead to superior search result.

c) In order to reduce the noise in fitness evolution, the evolutionary system can evolve

ANN architectures and weights simultaneously. Learned architectures and weights in

one generation are inherited by the next generation. This is closer to the Lamarckian

evolution than to the Darwinian one. Also, this is quite different from most genetic

approaches where only architectures not weights are passed to the next generation [62].

d) To improve the rate of convergence in the training process for ANN one can follow

the parallel nonlinear optimizing techniques proposed recently by Paul et. al. [40], which

 89

ultimately will speed up the evolutionary search. Also, ANN task decomposition method

can be adopt based on output parallelism [51] to increase learning speed. Divide and

conquer (DCL) scheme by Hsin et. al. [26] and the suggestions for associative memories

proposed by Yingquan et. al. [63] can also be considered.

e) One of the future improvements would be giving more attention to the compactness of

the evolved ANN. For example, the EPNet algorithm of Xin Yao et. al. [62] produces

very compact ANN which is an attractive property of their evolutionary approach. But

this is achieved at the cost of longer computation time. Thus, if a new evolutionary

system can be proposed that encourages the parsimony of the evolved ANN without

compromising the evolution time, it will be a very appreciable.

 90

Bibliography

[1] Ágoston E. Eiben, Robert Hinterding, and Zbigniew Michalewicz, “Parameter control

in evolutionary algorithms”, IEEE Trans. on Evolutionary Computation, vol. 3, pp: 124-

141, 1999.

[2] Aristid Lindenmayer, “Mathematical Models for Cellular Interactions in

Development”, in Journal of Theoretical Biology, vol. 18, pp. 280-299, 1968.

[3] A. Roy, S. Govil, and R. Miranda, “An algorithm to generate radial basis function

(RBF)-like nets for classification problems,” Neural Networks, vol. 8, pp. 179–201, 1995.

[4] Avelino J. Gonzalez, and Douglas D. Dankel, "The Engineering of Knowledge-based

Systems", Prentice-Hall Inc. ISBN 0-13-334293-X, 1993.

[5] Bart L. M. Happel, and Jacob M. J. Murre, “Design and Evolution of Modular Neural

Network Architectures”, in Neural Networks, vol. 7, no. 6/7, pp. 985-1004, 1994.

[6] C. M. Friedrich and C. Moraga, “An evolutionary method to find good building

blocks for architectures of artificial neural networks”, Proceedings of the Sixth

International Conference on Information Processing and Management of Uncertainty in

Knowledge Based Systems, pp. 951-956, 1996.

[7] Christian Jacob, and Jan Rehder, “Evolution of Neural Net Architectures by a

Hierarchical Grammar-based Genetic System”, in Proceedings of the International Joint

Conference on Neural Networks and Genetic Algorithms, Innsbruck, pp. 72-79, 1993.

 91

[8] Data and Analysis Center for Software, "Artificial Neural Networks Technology",

http://www.dacs.dtic.mil/techs/neural/neural.title.html, Rome. NY, August, 1992.

[9] David W. White, “GANNet: A genetic Algorithm for Searching Topology and

Weight Spaces in Neural Network Design”, Dissertation at the University of Maryland,

1993.

[10] David E. Goldberg, “Genetic algorithms in search, optimization, and machine

learning”, published by Pearson Education (Singapore) Pte Ltd, ISBN 81-7808-130-X,

Fifth Indian Reprint, pp. 10-14, pp. 236-238, 2002.

[11] David J. Montana, “Automated Parameter Tuning for Interpretation of Synthetic

Images”, in the Handbook for Genetic Algorithms, pp. 282-311, 1991.

[12] D. B. Fogel, “Evolutionary computation: towards a new philosophy of machine

intelligence”, IEEE Press, NY 10017-2394, 1995.

[13] D. Montana, and L. Davis, “Training Feedforward Neural Networks using Genetic

Algorithms”, in Proceedings of the 11th International Joint Conference on Artificial

Intelligence, Morgan Kaufmann, pp. 762-767, 1989.

[14] Darell Whitley, J. David Schaffer, and Larry J. Eshelman, “Combinations of genetic

algorithms and neural networks: A survey of the State of the Art”, in Proceedings of the

International Workshop on Combinations of genetic algorithms and neural networks,

Baltimore, IEEE, pp. 1-37, 1992.

[15] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and neural

networks: optimizing connections and connectivity”, in Parallel Computing 14, North-

Holland, pp. 347-361, 1990.

 92

[16] Egber Boers, and Herman Kuiper, “Biological Metaphors and the Design of Modular

Artificial Neural Networks”, Master thesis at Leiden University , the Netherlands, 1992.

[17] Fatemeh Zahedi, "Intelligent Systems for Business: Expert Systems with Neural

networks”, Wadsworth Inc. ISBN 0-534-18888-5, 1993.

[18] Frédéric Gruau, “Neural network synthesis using cellular encoding and the genetic

algorithm”, Ph.D. Thesis, Ecole Normale Supérieure de Lyon, 1994.

[19] Frédéric Gruau and Darrell Whitley, “Adding learning to the cellular development of

neural networks: evolution and the baldwin effect”, Evolutionary Computation, vol. 1,

pp. 213-233, 1993.

[20] Frédéric Gruau, Darrell Whitley and Larry Pyeatt, “A comparison between cellular

encoding and direct encoding for genetic neural networks”, Proceedings of the First

Genetic Programming Conference, pp. 81-89, 1996.

[21] F. Kursawe, "Evolution Strategies: Simple Models of Natural Processes", Revue

Internationale De Systemique, France, 1994.

[22] Geoffrey F. Miller, Peter M. Todd, and Shailesh U. Hedge, “Designing Neural

Networks using Genetic Algorithms”, in Proceedings of the Third International

Conference on Genetic Algorithms, Morgan Kaufmann, pp. 379-384, 1989.

[23] Hiroaki Kitano, “Designing Neural Networks Using Genetic Algorithms with Graph

Generation Systems”, in Complex Systems, no. 4, pp. 461-476, 1990.

[24] Hiroaki Kitano, “Empirical Studies on the Speed of Convergence of Neural Network

Training using Genetic Algorithms”, in Eighth National Conference on Artificial

Intelligence, AAAI, MIT Press, vol. II, pp 789-795, 1990.

 93

[25] H. Schwefel, "Collective Phaenomena in Evolutionary Systems", 31st Annual Meet.

Inter'l Soc. for general system research, Budapest, 1025-1033, 1987.

[26] Hsin-Chia Fu, Yen-Po Lee, Cheng-Chin Chiang and Hsiao-Tien Pao, "Divide and

Conquer Learning and Modular Perceptron Networks", IEEE transactions on neural

networks, vol 12, no 2, pp 250, March 2001.

[27] John R. Koza, and James P. Rice, “Genetic Generation of Both the Weight and

Architecture for a Neural Network”, in Proceedings of the International Joint Conference

on Neural Networks, IEEE, vol. II, pp. 397-404, 1991.

[28] J. M. Bishop, and M. J. Bushnell, “Genetic Optimization of Neural Network

Architectures for Colour Recipe Prediction”, in Proceedings of the International Joint

Conference on Neural Networks and Genetic Algorithms, Innsbruck, pp. 719-725, 1993.

[29] J. P. Nadal, “Study of growth algorithm for a feedforward network”, International

Journal of Neural Systems, vol. 1, pp. 55-59, 1989.

[30] K. P. Bennet, and O. L. Mangasarian, “Robust Linear Programming Discrimination

of Two Linearly Inseparable Sets,” Optimization Methods Software, vol. 1, pp. 23–34,

1992.

[31] Leonardo Marti, “Genetically Generated Neural Networks II: Searching for an

Optimal Representation”, in IEEE International Joint Conference on Neural Networks,

vol. II, p. 221-226, 1992.

[32] L. Fausett, “Fundamentals of Neural Networks”, Englewood Cliffs, Prentice-Hall

Inc., pp. 461, 1994.

[33] L. J. Fogel, A. J. Owens, and M. J. Walsh, “Artificial intelligence through simulated

evolutionary”, New York, NY: John Wiley & Sons, 1996.

 94

[34] L. Prechelt, “Proben1—A set of neural network benchmark problems and

benchmarking rules,” Fakultat fur Informatik, Univ. Karlsruhe, Karlsruhe, Germany,

Tech. Rep. 21/94, Sept. 1994.

[35] Marko Grönroos, “A comparison of some methods for evolving neural networks”,

Proceedings of GECCO'99, Morgan Kaufmann Publishers, San Francisco, California,

vol. 2, 1999.

[36] Martin Mandischer, “Representation and Evolution of Neural Networks”, in

Proceedings of the International Joint Conference on Neural Networks and Genetic

Algorithms, Innsbruck, pp. 643-649, 1993.

[37] Md. Monirul Islam, Xin Yao, Kazayuki Murase, “A Constructive Algorithm for

Training Cooperative Neural Network Ensembles”, IEEE transactions on neural

networks, vol 14, no 4, pp 820, July 2003.

[38] N. Burgess, “A constructive algorithm that converges for real-valued input patterns”,

International Journal of Neural Systems, vol. 5, no. 1, pp. 59-66, 1994.

[39] Panayiota Poirazi, Costas Neocleous, Costantinos S. Pattichis and Cristos N.

Schizas, “Classification Capacity of a Modular Neural Network Architecture and

Implementing Neurally Inspired Architecture and Training Rules”, IEEE transactions on

neural networks, vol 15, no 3, pp 597, May 2004.

[40] Paul K. H. Phua, Daohua Ming, “Parallel Nonlinear Optimization Techniques for

Training Neural Networks”, IEEE transactions on neural networks, vol 14, no 6, pp

1460, Nov 2003.

[41] Philipp Köhn, “Genetic encoding strategies for neural networks”, Master’s thesis,

University of Tennessee, Knoxville, IPMU, 1996.

 95

[42] Petri Hodju, and Jokko Halme, “Neural Networks Information Homepage”,

http://koti.mbnet.fi/~phodju/nenet/index.html, Copyright (c) 1999.

[43] P. J. Angeline, G. M. Sauders and J. B. Pollack, “An evolutionary algorithm that

constructs recurrent neural networks”, IEEE Trans. on Neural Networks, vol. 5, no. 1, pp.

54-65, 1994.

[44] P. J. B. Hancock, “Genetic algorithms and permutation problems: a comparison of

recombination operators for neural net structure specification”, Proc. of the Int’l

Workshop on Combinations of Genetic Algorithms and Neural Networks (COGANN-92)

(D. Whitley and J. D. Schaffer, eds.), IEEE Computer Society Press, Los Alamitos, CA,

pp. 108-122,1992.

[45] Ravi Kothari and Vivek Jain, “Learning from labeled and unlabeled data using a

minimal number of queries”, IEEE transactions on neural networks, vol 14, no 6, pp

1496, Nov 2003.

[46] Resonance Publications, Inc, “Neural Networks”, http://www.Resonancepub. com

neuralnets.htm, June, 1998.

[47] R. K. Belew, J. McInerney, and N. N. Schraudolph, “Evolving networks: Using

genetic algorithm with connectionist learning,” Computer Sci. Eng. Dept., Univ.

California-San Diego, Tech. Rep. CS90-174 revised, Feb. 1991.

[48] R. Reed, “Pruning algorithm – a survey”, IEEE Trans. on Neural Networks, vol. 4,

no. 5, pp. 740-747, 1993.

[49] R. Setiono and L. C. K. Hui, “Use of a quasi-newton method in a feedforward neural

network construction algorithm”, IEEE Trans. on Neural Networks, vol. 6, no. 1, pp. 273-

277, 1995.

 96

[50] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning architecture”,

Advances in Neural Information Processing Systems 2 (D. S. Touretzky, ed.), Morgan

Kaufmann, San Mateo, CA, pp. 524-532, 1990.

[51] Sheng Uei Guan and Shanchun Li, “Parallel growing and training of neural networks

using output parallelism”, IEEE transactions on neural networks, vol 13, no 3, pp 542,

May 2002.

[52] Simon Haykin, “Neural networks: a comprehensive foundation”, published by

Prentice Hall International, Inc., Upper Saddle River, New Jersey 07458, ISBN 0-13-

908385-5, pp. 161-175, 1999.

[53] Steven Alex Harp, and Tariq Samad, “Genetic Synthesis of Neural Network

Architecture”, in Handbook of Genetic Algorithms, pp. 202-221, 1991.

[54] Steven Alex Harp, Tariq Samad, and Aloke Guha, “Towards the Genetic Synthesis

of Neural Networks”, in Proceedings of the Third International Conference on Genetic

Algorithms, Morgan Kaufmann, pp. 360-369, 1989.

[55] Talib Hussain, “Cellular encoding: review and critique”, Queen’s University, July

19, 1997.

[56] Vittorio Maniezzo, “Searching among Search Spaces: hastening the genetic

evolution of feed-forward neural networks”, in International Joint Conference on Neural

Networks and Genetic Algorithms, Innsbruck, pp. 635-642, 1993.

[57] Vittorio Maniezzo, “Genetic Evolution of the Topology and Weight Distribution of

Neural Networks”, in IEEE Transactions of Neural Networks, vol. 5, No. 1, pp 39-53,

1994.

 97

[58] Wolfram Schiffmann, Merten Joost, and Randolf Werner, “Performance Evaluation

of Evolutionary Created Neural Network Topologies”, in Parallel Problem Solving from

Nature 2, H.P. Schwefel and R. Maenner, Springer Verlag, pp. 292-296, 1991.

[59] W. Schiffmann, M. Joost, and R. Werner, “Synthesis and Performance Analysis of

Neural Network Architectures”, Technical Report 16, University of Koblenz, Germany,

ftp://archive.cis.ohio-state.edu(128.146.8.52)/pub/neuroprose/schiff.nnga.ps.Z, 1992.

[60] W. Schiffmann, M. Joost, and R. Werner, “Application of Genetic Algorithms to the

Construction of Topologies for Multilayer Perceptrons”, in Proceedings of the

International Joint Conference on Neural Networks and Genetic Algorithms, Innsbruck,

pp. 675-682, 1993.

[61] W. S. Sarle, “Introduction. Periodic posting to the Usenet newsgroup”, URL:

ftp://ftp.sas.com/pub/neural/FAQ.html, Neural Network FAQ, part 1 of 7, 1999.

[62] Xin Yao and Yong Liu, “A new evolutionary system for evolving artificial neural

networks”, IEEE transactions on neural networks, vol 8, no 3, pp 694-713, 1997.

[63] Yingquan Wu and Stella N. Batalama, “An efficient learning algorithm for

associative memories”, IEEE transactions on neural networks, vol 11, no 5, pp 1058,

Sept 2000.

 98

Appendix A

Neural Network Glossary

In this section some of the common terms about neural networks and genetic evolution,

which have not discussed in the previous chapters, are given for the interested reader.

Activation / Initialization function: The time-varying value that is the output of a

neuron.

Artificial Intelligence: An interdisciplinary approach to understanding human

intelligence that has its common thread the computer as an experimental vehicle.

Associative memory: Also called `content-addressable' memory. This type of memory is

not stored on any individual neuron but is a property of the whole network. It is by

inputting to the network part of the memory. This is very different from conventional

computer memory where a given memory (or piece of data) is assigned a unique address

which is needed to recall that memory.

Baldwin effect: In hybrid strategies, the effect of using the individual's fitness

determined by the objective function value after application of a local search. The

individual's genotype serves as initial condition of the local search. However, unlike

Lamarckian evolution, the individual's genotype remains unchanged.

Bias: The net input (or bias) is proportional to the amount that incoming neural

activations must exceed in order for a neuron to fire.

 99

Connectivity: The amount of interaction in a system, the structure of the weights in a

neural network, or the relative number of edges in a graph.

Elitism/ elitist selection: Property of selection methods, which guarantees the survival of

the best individual(s).

Encode network: A perceptron network designed to illustrate that the hidden layer nodes

play a crucial role in allowing the network to learn about special features in the input

patterns. Once it has learnt about the `generalized' features of the training pattern sit it can

respond usefully in new situations.

Epoch: One complete presentation of the training set to the network during training.

Fitness: Evaluation of an individual with respect to its reproduction capability. Selection

in EA is based on the fitness. Generally, it is determined on the basis of the objective

value(s) of the individual in comparison with all other individuals in the selection pool.

The fitness function may additionally depend on different side conditions/constraints and

stochastic influences (fitness noise/noisy fitness). The term ``fitness function'' is often

used as a synonym for objective function. It varies greatly from one type of program to

the next. For example, if one were to create a genetic program to set the time of a clock,

the fitness function would simply be the amount of time that the clock is wrong.

Unfortunately, few problems have such an easy fitness function; most cases require a

slight modification of the problem in order to find the fitness.

Generalization: A measure of how well a network can respond to new images on which

it has not been trained but which are related in some way to the training patterns. An

ability to generalize is crucial to the decision making ability of the network.

Genotype: In EA with genotype-phenotype mapping, the genotype is the representation

on which the crossover and mutation operators are applied to (see also phenotype).

 100

Hopfield network: A particular example of an artificial neural network capable of

storing and recalling memories or patterns. All nodes in the network feed signals to all

others.

Input layer: Neurons whose inputs are fed from the outside world.

Lamarckian evolution: Adjustment of the genotype to the locally optimized offspring

(local search) in hybrid strategies.

Layer: A group of neurons that have a specific function and are processed as a whole.

The most common example is in a feedforward network that has an input layer, an output

layer and one or more hidden layers.

Learning parameter: Also learning rate, in self-adaptive ES/EP, an exogenous strategy

parameter which influences the speed of self-adaptation of the mutation strength

Linear Networks: A general scientific principal is that a simple model should always be

chosen in preference to a complex model if the latter does not fit the data better. In terms

of function approximation, the simplest model is the linear model, where the fitted

function is a hyperplane. In classification, the hyperplane is positioned to divide the two

classes (a linear discriminant function); in regression, it is positioned to pass through the

data. A linear model is typically represented using an N × N matrix and an N × 1 bias

vector.

A neural network with no hidden layers, and an output with dot product synaptic function

and identity activation function, actually implements a linear model. The weights

correspond to the matrix, and the thresholds to the bias vector. When the network is

executed, it effectively multiplies the input by the weights matrix then adds the bias

vector.

The linear network provides a good benchmark against which to compare the

performance of your neural networks. It is quite possible that a problem that is thought to

be highly complex can actually be solved as well by linear techniques as by neural

 101

networks. If you have only a small number of training cases, you are probably anyway

not justified in using a more complex model.

Multilayer-perceptron (MLP): This is perhaps the most popular network architecture in

use today, due originally to Rumelhart and McClelland (1986) and discussed at length in

most neural network textbooks (e.g., Bishop, 1995). MLP is a type of feedforward neural

network that is an extension of the perceptron in that it has at least one hidden layer of

neurons. Layers are updated by starting at the inputs and ending with the outputs. Each

neuron computes a weighted sum of the incoming signals, to yield a net input, and passes

this value through its sigmoidal activation function to yield the neuron's activation value.

Unlike the perceptron, an MLP can solve linearly inseparable problems. A graphical

representation of an MLP is shown below.

Figure A.1: A multilayer perceptron.

Neuron: A simple computational unit that performs a weighted sum on incoming signals,

adds a threshold or bias term to this value to yield a net input, and maps this last value

through an activation function to compute its own activation. Some neurons, such as

those found in feedback or Hopfield networks, will retain a portion of their previous

activation.

 102

Output neuron: A neuron within a neural network whose outputs are the result of the

network.

Over-learning and Generalization: One major problem with the approach outlined

above is that it doesn't actually minimize the error that one is really interested in - which

is the expected error the network will make when new cases are submitted to it. In other

words, the most desirable property of a network is its ability to generalize to new cases.

In reality, the network is trained to minimize the error on the training set, and short of

having a perfect and infinitely large training set, this is not the same thing as minimizing

the error on the real error surface - the error surface of the underlying and unknown

model. The most important manifestation of this distinction is the problem of over-

learning, or over-fitting.

How can one select the right complexity of network? A larger network will almost

invariably achieve a lower error eventually, but this may indicate over-fitting rather than

good modeling. The answer is to check progress against an independent data set, the

selection set. Some of the cases are reserved, and not actually used for training in the

back propagation algorithm. Instead, they are used to keep an independent check on the

progress of the algorithm. It is invariably the case that the initial performance of the

network on training and selection sets is the same (if it is not at least approximately the

same, the division of cases between the two sets is probably biased). As training

progresses, the training error naturally drops, and providing training is minimizing the

true error function, the selection error drops too. However, if the selection error stops

dropping, or indeed starts to rise, this indicates that the network is starting to overfit the

data, and training should cease. When over-fitting occurs during the training process like

this, it is called over-learning. In this case, it is usually advisable to decrease the number

of hidden units and/or hidden layers, as the network is over-powerful for the problem at

hand. In contrast, if the network is not sufficiently powerful to model the underlying

function, over-learning is not likely to occur, and neither training nor selection errors will

drop to a satisfactory level.

 103

Perceptron: An artificial neural network capable of simple pattern recognition and

classification tasks. It is composed of three layers where signals only pass forward from

nodes in the input layer to nodes in the hidden layer and finally out to the output layer.

There are no connections within a layer.

Phenotype: Expression of the properties coded by the individual's genotype. The

expression/development of the phenotype can additionally be influenced by (stochastic)

constraints. The precise definition is mostly problem-dependent. For parameter

optimization the phenotype is usually identical with the object parameters, whereas for

structure optimization (e.g. of neural networks) the phenotype represents a specific

structure.

Population: Pool of individuals exhibiting equal or similar genome structures, which

allows the application of genetic operators

Probabilistic Neural Networks: A useful interpretation of network outputs was as

estimates of probability of class membership, in which case the network was actually

learning to estimate a probability density function (p.d.f.). A similar useful interpretation

can be made in regression problems if the output of the network is regarded as the

expected value of the model at a given point in input-space. This expected value is related

to the joint probability density function of the output and inputs.

Estimating probability density functions from data has a long statistical history (Parzen,

1962), and in this context fits into the area of Bayesian statistics. Conventional statistics

can, given a known model, inform us what the chances of certain outcomes are (e.g., it is

known that an unbiased die has a 1/6th chance of coming up with a six). Bayesian

statistics turns this situation on its head, by estimating the validity of a model given

certain data. More generally, Bayesian statistics can estimate the probability density of

model parameters given the available data. To minimize error, the model is then selected

whose parameters maximize this p.d.f.

In the context of a classification problem, if one can construct estimates of the p.d.f.s of

the possible classes, one can compare the probabilities of the various classes, and select

 104

the most-probable. This is effectively what one ask a neural network to do when it learns

a classification problem - the network attempts to learn (an approximation to) the p.d.f.

A more traditional approach is to construct an estimate of the p.d.f. from the data. The

most traditional technique is to assume a certain form for the p.d.f. (typically, that it is a

normal distribution), and then to estimate the model parameters. The normal distribution

is commonly used as the model parameters (mean and standard deviation) can be

estimated using analytical techniques. The problem is that the assumption of normality is

often not justified.

An alternative approach to p.d.f. estimation is kernel-based approximation (Parzen, 1962;

Speckt, 1990; Speckt, 1991; Bishop, 1995; Patterson, 1996). One can reason loosely that

the presence of particular case indicates some probability density at that point: a cluster

of cases close together indicate an area of high probability density. Close to a case, one

can have high confidence in some probability density, with a lesser and diminishing level

as one moves away. In kernel-based estimation, simple functions are located at each

available case, and added together to estimate the overall p.d.f. Typically, the kernel

functions are each Gaussians (bell-shapes). If sufficient training points are available, this

will indeed yield an arbitrarily good approximation to the true p.d.f.

This kernel-based approach to p.d.f. approximation is very similar to radial basis function

networks, and motivates the probabilistic neural network (PNN) and generalized

regression neural network (GRNN), both devised by Speckt (1990 and 1991). PNNs are

designed for classification tasks and GRNNs for regression. These two types of network

are really kernel-based approximation methods cast in the form of neural networks.

In the PNN, there are at least three layers: input, radial, and output layers. The radial units

are copied directly from the training data, one per case. Each models a Gaussian function

centered at the training case. There is one output unit per class. Each is connected to all

the radial units belonging to its class, with zero connections from all other radial units.

Hence, the output units simply add up the responses of the units belonging to their own

class. The outputs are each proportional to the kernel-based estimates of the p.d.f.s of the

various classes, and by normalizing these to sum to 1.0 estimates of class probability are

produced.

 105

The greatest advantages of PNNs are the fact that the output is probabilistic (which

makes interpretation of output easy), and the training speed. Training a PNN actually

consists mostly of copying training cases into the network, and so is as close to

instantaneous as can be expected.

The greatest disadvantage is network size: a PNN network actually contains the entire set

of training cases, and is therefore space-consuming and slow to execute.

PNNs are particularly useful for prototyping experiments (for example, when deciding

which input parameters to use), as the short training time allows a great number of tests

to be conducted in a short period of time.

Radial Basis Function Networks: MLP models response functions using the

composition of sigmoid-cliff functions - for a classification problem, this corresponds to

dividing the pattern space up using hyperplanes. The use of hyperplanes to divide up

space is a natural approach - intuitively appealing, and based on the fundamental

simplicity of lines. An equally appealing and intuitive approach is to divide up space

using circles or (more generally) hyperspheres. A hypersphere is characterized by its

center and radius. More generally, just as an MLP unit responds (non-linearly) to the

distance of points from the line of the sigmoid-cliff, in a radial basis function network

(Broomhead and Lowe, 1988; Moody and Darkin, 1989; Haykin, 1994) units respond

(non-linearly) to the distance of points from the center represented by the radial unit. The

response surface of a single radial unit is therefore a Gaussian (bell-shaped) function,

peaked at the center, and descending outwards. Just as the steepness of the MLP's

sigmoid curves can be altered, so can the slope of the radial unit's Gaussian. MLP units

are defined by their weights and threshold, which together give the equation of the

defining line, and the rate of fall-off of the function from that line. Before application of

the sigmoid activation function, the activation level of the unit is determined using a

weighted sum, which mathematically is the dot product of the input vector and the weight

vector of the unit; these units are therefore referred to as dot product units. In contrast, a

radial unit is defined by its center point and a radius. A point in N dimensional space is

defined using N numbers, which exactly corresponds to the number of weights in a dot

product unit, so the center of a radial unit is stored as weights. The radius (or deviation)

 106

value is stored as the threshold. It is worth emphasizing that the weights and thresholds in

a radial unit are actually entirely different to those in a dot product unit, and the

terminology is dangerous if you don't remember this: Radial weights really form a point,

and a radial threshold is really a deviation.

A radial basis function network (RBF), therefore, has a hidden layer of radial units, each

actually modeling a Gaussian response surface. Since these functions are nonlinear, it is

not actually necessary to have more than one hidden layer to model any shape of

function: sufficient radial units will always be enough to model any function. The

remaining question is how to combine the hidden radial unit outputs into the network

outputs? It turns out to be quite sufficient to use a linear combination of these outputs

(i.e., a weighted sum of the Gaussians) to model any nonlinear function. The standard

RBF has an output layer containing dot product units with identity activation function.

RBF networks have a number of advantages over MLPs. First, as previously stated, they

can model any nonlinear function using a single hidden layer, which removes some

design-decisions about numbers of layers. Second, the simple linear transformation in the

output layer can be optimized fully using traditional linear modeling techniques, which

are fast and do not suffer from problems such as local minima which plague MLP

training techniques. RBF networks can therefore be trained extremely quickly (i.e., orders

of magnitude faster than MLPs).

Experience indicates that the RBF's more eccentric response surface requires a lot more

units to adequately model most functions. Of course, it is always possible to draw shapes

that are most easily represented one way or the other, but the balance does not favor

RBFs. Consequently, an RBF solution will tend to be slower to execute and more space

consuming than the corresponding MLP (but it was much faster to train, which is

sometimes more of a constraint). RBFs are also more sensitive to the curse of

dimensionality, and have greater difficulties if the number of input units is large.

Self-organizing: A network is called self-organizing if it is capable of changing its

connections so as to produce useful responses for input patterns without the instruction of

a smart teacher.

 107

Sigmoid function: An S-shaped function that is often used as an activation function in a

neural network.

SOFM Networks: Self Organizing Feature Map (SOFM, or Kohonen) networks are used

quite differently to the other networks. Whereas all the other networks are designed for

supervised learning tasks, SOFM networks are designed primarily for unsupervised

learning (see Kohonen, 1982; Haykin, 1994; Patterson, 1996; Fausett, 1994). A SOFM

network has only two layers: the input layer, and an output layer of radial units (also

known as the topological map layer). The units in the topological map layer are laid out

in space - typically in two dimensions. SOFM networks are trained using an iterative

algorithm. Once the network has been trained to recognize structure in the data, it can be

used as a visualization tool to examine the data.

Threshold: A quantity added to (or subtracted from) the weighted sum of inputs into a

neuron, which forms the neuron's net input. Intuitively, the net input (or bias) is

proportional to the amount that the incoming neural activations must exceed in order for a

neuron to fire.

Weight: In a neural network, the strength of a synapse (or connection) between two

neurons. Weights may be positive (excitatory) or negative (inhibitory). The thresholds of

a neuron are also considered weights, since they undergo adaptation by a learning

algorithm.

