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Chapter 4 

The Genetic search scheme 
 

 

This section introduces different types of evolutionary methodology. Along with the new 

approach, the effects of the genetic operator crossover upon the MCE encoded ANNs are 

discussed. The algorithm to realize the PST is also presented. 

 

4.1 Evolutionary Approaches 
 

Evolutionary algorithm (EA) is an umbrella term used to describe computer based 

problem solving systems which use computational models of evolutionary processes as 

key elements in their design and implementation. A variety of EAs have been proposed. 

The major ones are: genetic algorithms, evolutionary programming, evolution strategies 

and genetic programming. They all share a common conceptual base of simulating the 

evolution of individual structures via processes of selection, mutation, and reproduction 

as depicted in Figure 4.1. The processes depend on the perceived performance of the 

individual structures as defined by an environment. In brief, EA is a system which 

incorporates aspects of natural selection or survival of the fittest. Although simplistic 

from a biologist's viewpoint, these algorithms are sufficiently complex to provide robust 

and powerful adaptive search mechanisms. 



 59

 
Figure 4.1: Problem solution using EA. 

 

4.1.1 Genetic Algorithm 
 

The genetic algorithm (GA) is a model of machine learning which derives its behavior 

from a metaphor of the processes of evolution in nature. This is done by the creation 

within a machine of a population of individuals represented by chromosomes, in essence 

a set of character strings that are analogous to the base-4 chromosomes that is seen in our 

own DNA.  The individuals in the population then go through a process of evolution. 

At the molecular level what occurs is that a pair of chromosomes bump into one another, 

exchange chunks of genetic information and drift apart.  This  is  the  recombination 

operation,  which GA generally refer to as crossover because of the way that genetic 

material crosses over  from  one  chromosome  to another. 

The crossover operation happens in an environment where the selection of who gets to 

mate is a function of the fitness of the individual, i.e. how good the individual is at 

competing in its environment. Mutation also plays a role in this process, although how 

important its role is continues to be a matter of debate. When the GA is implemented it is 

usually done in a manner that involves the following cycle:  evaluate the fitness of all of 

the individuals in the population.  Create a new population by performing operations such 

as crossover, fitness-proportionate reproduction and mutation on the individuals whose 

fitness has just been measured. Discard the old population and iterate using the new 

population. One iteration of this loop is referred to as a generation.  There is no 

theoretical reason for this as an implementation model. Indeed, one does not see this 
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punctuated behavior in populations in nature as a whole, but it is a convenient 

implementation model. 

 

4.1.2 Evolutionary Programming 
 

Evolutionary programming (EP), originally conceived by Lawrence J. Fogel in 1960, is a 

stochastic optimization strategy similar to GAs, but instead places emphasis on the 

behavioral linkage between parents and their offspring, rather than seeking to emulate 

specific genetic operators as observed in nature. EP is similar to evolution strategies (ES), 

although the two approaches developed independently. It should be pointed out that EP 

typically does not use any crossover as a genetic operator [12]. 

There are two important ways in which EP differs from GA. First, the typical GA 

approach involves encoding the problem solutions as a string of representative tokens, the 

genome.  In EP, the representation follows from the problem.  A neural network can be 

represented  in  the  same manner  as  it  is  implemented,  for  example,  because the 

mutation operation does not demand a linear encoding. Second, the mutation operation 

simply changes aspects of the solution according  to  a  statistical  distribution   which   

weights   minor variations  in  the  behavior of the offspring as highly probable and 

substantial  variations  as  increasingly  unlikely. 

The main differences between Evolution strategy (ES) and EP are: 

 

a) Selection:  EP typically uses stochastic selection via a tournament. Each  trial  solution  

in  the  population  faces competition  against  a  preselected  number  of  opponents  and 

receives  a  "win"  if it is at least as good as its opponent in each encounter.  Selection 

then eliminates those solutions with the least wins. In contrast, ES typically uses 

deterministic selection in which the worst solutions are purged from the population based 

directly on their function evaluation. 

 

b) Recombination: EP is an abstraction of evolution at the level of reproductive 

populations (i.e.,   species) and thus no recombination mechanisms are typically used 

because recombination does not occur between species. In contrast, ES is an abstraction 
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of evolution at the level of individual behavior. When  self-adaptive  information  is 

incorporated this is purely genetic information (as opposed to  phenotypic)  and  thus  

some forms   of  recombination  are  reasonable  and  many  forms  of recombination 

have  been  implemented  within  ES. 

 

4.1.3 Evolution Strategy 
 

Evolution strategies (ES) were invented   to   solve   technical optimization problems. It is 

more or less similar to EP. Self-adaptation within ES depends on randomness, population 

size, cooperation and deterioration [21], [40]. 

 

4.1.4 Genetic Programming 
 

Genetic programming (GP) is the extension of the genetic model of learning into the 

space of programs. That is, the objects that constitute  the population   are  not  fixed-

length  character  strings  that  encode possible solutions to the problem at hand, they  are  

programs  that, when  executed, are the candidate solutions to the problem. These 

programs are expressed in genetic programming as parse trees, rather than as lines of 

code. 

In GP the crossover operation is implemented by taking randomly selected subtrees in the 

individuals (selected according to fitness) and exchanging them. It should be pointed out 

that GP usually does not use any mutation as a genetic operator. 

 

4.2 Crossover on MCE 
 

This subsection illustrates the rules and effects of the genetic operator crossover on the 

modified CE. 

While growing of an ANN from a PST, each cell transformed to a neuron when its 

reading head ends at an END symbol. This necessarily means that for each neuron there 

must have an END symbol, which is a leaf of the PST. In fact, the number of ENDs in a 
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PST is equal to or greater than (some neurons of corresponding END leaves may be 

removed by MRG operation) the number of neurons in the ANN. To avoid the risk of 

changing the structure of ANN drastically by crossover effect, crossover is allowed on 

last level (leaf) or second last level. That is, the roots of the two subtrees chosen form a 

pair of CE for crossover must have all children as END or no children. If the root of a 

subtree is a binary symbol (i.e. PAR or SEQ) it has two children both of END symbols. If 

the root is a unary symbol (i.e. CUT or MRG) it has single child END. If the root is END 

itself, it has no children. But both of the subtrees chosen for exchange cannot be same 

since in that case the crossover would have no effect. The following table shows all 

possible combinations of crossover and their effects on the genotypes of ANNs. 

Table 4.1: Effects of crossover on CE. 

Replaced by Effects of 

Crossover PAR SEQ CUT MRG END 

PAR NC OCN CD, ND OC, ND ND 

SEQ OCN NC CD, ND OC, ND ND 

CUT CA, NA CA, NA OC or NC OC, ND∗ CA 

MRG OC, NA OC, NA OC, NA∗ NC or OCN OC, NA∗ 

To
 b

e 
re

pl
ac

ed
 

END NA NA CD OC, ND∗ NC 

Here, 

NC ≡ no change in the architecture of corresponding ANNs 

NA ≡ node addition 

ND ≡ node deletion 

CA ≡ connection addition 

CD ≡ connection deletion 

OC ≡ new orientation of connection 

OCN ≡ new orientation of both connection and node 
∗ effect may or may not takes place, depends on orientation of connections and 

   the parameter of the corresponding symbol 
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It is clear from the above table that all sorts of modifications of ANNs (for example 

addition and / or deletion of node and / or connection) can be happened from crossover. 

Since crossover is allowed only at the lowest level or immediate above it, massive 

changes in the architecture at a time cannot occur. 

One has to put across the rules for applying the genetic operator crossover on the 

modified CE so that its properties are not destroyed even after crossover operation. First 

thing to remember is that crossover cannot be applied on the roots of PSTs, it must be 

applied on two different subtrees. If these two subtrees are same crossover would have no 

effect. When applying crossover between two cellular encodings CE1 and CE2 by 

exchanging two random subtrees ST1 (from CE1) and ST2 (from CE2), the following 

three situations may arise. 

i) None the parents of ST1 and ST2 is PAR. 

ii) One of the parents of ST1 and ST2 is PAR. 

iii) Both the parents of ST1 and ST2 are PAR. 

In case (i), crossover is just applied accordingly. 

In case (ii), let, without loss of generality, the parent of ST1 is PAR and the parent of ST2 

is not PAR. The sub-cases can occur as follows: 

a) Both the roots of ST1, ST2 are PAR 

b) Both the roots of ST1, ST2 are not PAR 

c) The root of ST1 is PAR, the root of ST2 is not PAR 

d) The root of ST1 is not PAR, the root of ST2 is PAR 

In sub-case (a) crossover is not applied. For other sub-cases it is applied accordingly. 

After crossover is done, the ordering described in Property 1 is established among the 

children of the parent of ST2 in CE1. 

In case (iii), the sub-cases can occur as follows: 

e) Both the roots of ST1, ST2 are PAR 

f) Both the roots of ST1, ST2 are not PAR 

g) The root of ST1 is PAR, the root of ST2 is not PAR 

h) The root of ST1 is not PAR, the root of ST2 is PAR 
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In sub-case (e) crossover is not done. For other sub-cases, crossover is applied 

accordingly but the ordering described in Property 1 is established among the children of 

both the parent of ST2 in CE1 and the parent of ST1 in CE2. 

 

4.3 CE to DE Conversion 
 

Input: the PST to be executed. 

Output: the matrix representation (direct encoding) of the ANN. 

 

m ≡ number of input nodes 

n ≡ number of output nodes 

N ≡ maximum number of hidden nodes allowed in the ANN 

M ≡ a matrix with m + N rows and N + n columns; M[i, j] = 1 means that there is a 

connection from i-th node to j-th node, M[i, j] = 0 means that there is no connection 

from i-th node to j-th node 

 

Initialize a FIFO with the root of the PST as the only entry 

Initialize all the entries of the matrix M to 0 

while (head of the FIFO ≠ NULL) 

case (head of the FIFO) 

PAR: Copy the inputs and outputs of the current i-th entry (cell) in a new 

j-th entry (cell) of the matrix. Enter both of the entries (cells) i, j at the end 

of the FIFO in random order. 

SEQ: Remove the outputs of the current i-th entry and copy these to a new 

j-th entry of the matrix; Set M[i, j] = 1. Enter entry i at the end of the 

FIFO, then enter entry j in the FIFO. 

CUT x: Let the x-th input link to the current entry i is j. Set M[j, i] = 0. 

Place the entry i at the end of the FIFO. 

MRG x: Let the x-th input link to the current entry i is j. If j-th entry has 

only one output link and its reading head not yet end, enter the current 
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entry i at the end of the FIFO. Nothing changes in the matrix (this action is 

like WAIT). Otherwise, set M[j, i] = 0 and copy all the input links into 

entry j to the entry i. Also if j-th entry has no more output link, remove all 

the input links into entry j. Place entry i at the end of the FIFO. 

END: Do nothing. Purge the reading head of the cell and convert it to a 

node of ANN. 

end case 

end while 

 

The number of symbols k executed by the algorithm is the number of symbols present in 

the PST and k = O(m + N + n). Let, PAR, SEQ and MRG handle on an average l number 

of connections (entries of the matrix) that depends on O(m + N). So in the worst case, the 

cost for executing the above algorithm is O(lk). 

 

4.4 The Evolutionary System 
 

The major steps of the evolutionary system proposed in this work are depicted in the 

Figure 4.2, which are explained further as follows [6], [12], [19], [33]: 

1. Generate initial population (program symbol trees) of M networks randomly. 

The initial number of hidden nodes, connection density and weights for each 

ANN are uniformly distributed at random within certain ranges. 
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Figure 4.2: Major steps of the evolutionary system. 

 

2. Partially train each network in the population for a certain number of epochs 

K0, which is user specified, using normal backpropagation [52]. 

3. Rank the networks in the population according to their error values, from the 

best to the worst. 

4. If the best network found is acceptable or the maximum number of 

generations has been reached, stop the evolutionary process and go to the step 

7. Otherwise continue. 
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5. Use the rank based selection (the roulette wheel selection [10]) to select 

parents for crossover operations to obtain offspring networks. 

6. Partially train each child for K1 epochs using normal BP. Here, K1 is a user 

specified parameter. In the evolution if an offspring is better than its parent it 

will replace the parent. Go to step 3. 

7. After the evolutionary process, train the best network further on the combined 

training and validation set until it converges. 
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Chapter 5 

Experimental Studies 
 

 

Machine learning investigates the mechanisms by which knowledge is acquired through 

experience. Databases with millions of records and thousands of fields are now common 

in business, medicine, engineering, and the sciences. In order to evaluate the ability of the 

approach in evolving ANN, it has been applied to the database of some real-world 

problems. This section portrays the experimental references, setup, results and 

comparisons with other works. 

 

5.1 Data Sets Applied 
 

The algorithm is applied on four real-world problems in the medical domain, i.e., the 

breast cancer problem, the diabetes problem, the heart disease problem, and the thyroid 

problem. All data sets were obtained from the machine learning benchmark repository 

cited at the Department of Information and Computer Science of University of California, 

Irvine. 

This is a repository of databases, domain theories and data generators that are used by the 

machine learning community for the empirical analysis of machine learning algorithms. 

A large collection of data sets is accessible via anonymous FTP at ftp.ics.uci.edu 

[128.195.1.1] in directory "/pub/machine-learning-databases" or via web browser at 

http://www.ics.uci.edu/~mlearn/ MLRepository.html. The Knowledge Discovery in 

Databases (KDD) Archive here encompasses a wide variety of data types, analysis tasks, 

and application areas. The primary role of this repository is to serve as a benchmark 

tested to enable researchers in knowledge discovery and data mining to scale existing and 
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future data analysis algorithms to very large and complex data sets. This archive is 

supported by the Information and Data Management Program at the National Science 

Foundation, and is intended to expand the current UCI Machine Learning Database 

Repository to datasets that are orders of magnitude larger and more complex. An 

important file to read regarding the repository is the README file. It contains an overall 

description of the repository. Another file, SUMMARY-TABLE, contains a table of 

some of the databases. Each database is characterized by a fixed set of attributes. The 

construction of this repository is an on-going process. The majority of the entries in the 

repository were contributed by machine learning researchers outside of UCI. 

Here the data format followed in Proben1 is used. Proben1 is a collection of 12 learning 

problems consisting of real data. The data files all share a single simple common format. 

Along with the data comes a technical report describing a set of rules and conventions for 

performing and reporting benchmark tests and their results. It is accessible via 

anonymous FTP on ftp.cs.cmu.edu [128.2.206.173] as/afs/cs/project/connect/bench/ 

contrib/prechelt/proben1.tar.gz and also on ftp.ira.uka.de as /pub/neuron/proben1.tar.gz. 

The file is about 1.8 MB and unpacks into about 20 MB. 

 

The four medical diagnosis problems used have the following common characteristics 

[34]. 

• The input attributes used are similar to those a human expert would use in order to 

solve the same problem. 

• The outputs represent either the classification of a number of understandable classes 

or the prediction of a set of understandable quantities. 

• In practice, all these problems are solved by human experts. 

• Examples are expensive to get. This has the consequence that the training sets are 

not very large. 

• There are missing attribute values in the data sets. 

These data sets represent some of the most challenging problems in the ANN and 

machine learning field. They have a small sample size of noisy data. 
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5.1.1 Heart Disease 
 

This Heart directory contains 4 databases concerning heart disease diagnosis. The data 

was collected from the four following locations: 

1. Cleveland Clinic Foundation (cleveland.data) 

2. Hungarian Institute of Cardiology, Budapest (hungarian.data) 

3. V.A. Medical Center, Long Beach, CA (long-beach-va.data) 

4. University Hospital, Zurich, Switzerland (switzerland.data) 

The first set which comes from the Cleveland Clinic Foundation and was supplied by 

Robert Detrano of the V.A. Medical Center, Long Beach, CA is used. The purpose of the 

data set is to predict the presence or absence of heart disease given the results of various 

medical tests carried out on a patient. This database contains 13 attributes, which have 

been extracted from a larger set of 75. The database originally contained 303 examples. 

There are two classes: presence and absence (of heart disease). This is a reduction of the 

number of classes in the original data set in which there were four different degrees of 

heart disease. The input attributes are discrete on a scale 0 - 1 (real) and output is 0 or 1 

(binary).  

 

5.1.2 Diabetes 
 

This data set was originally donated by Vincent Sigillito from Johns Hopkins University 

and was constructed by constrained selection from a larger database held by the National 

Institute of Diabetes and Digestive and Kidney Diseases. All patients represented in this 

data set are females of at least 21 years old and of Pima Indian heritage living near 

Phoenix, AZ. The problem posed here is to predict whether a patient would test positive 

for diabetes according to World Health Organization criteria given a number of 

physiological measurements and medical test results. This is a two class problem with 

class value one interpreted as “tested positive for diabetes.” There are 500 examples of 

class 1 and 268 of class 2. There are eight attributes for each example. The data set is 

rather difficult to classify. The so-called “class” value is really a binarised form of 

another attribute which is itself highly indicative of certain types of diabetes but does not 
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have a one to one correspondence with the medical condition of being diabetic. Although 

there are no missing values in this dataset according to its documentation, there are 

several senseless 0 values. These most probably indicate missing data. Nevertheless, this 

data are handled as if it was real, thereby introducing some errors (or noise, if you want) 

into the dataset. The input attributes are discrete on a scale 0 - 1 (real) and output attribute 

is binary valued.  

 

5.1.3 Thyroid 
 

This data set comes from the “ann” version of the “thyroid disease” data set from the UCI 

ML repository. Original donor is Randolf Wernero btained from Daimler-Benz.Two files 

were provided. “anntrain.data” contains 3772 learning examples. “ann-test.data” contains 

3428 testing examples. There are 21 (15 attributes are binary, 6 attributes are continuous) 

attributes for each example. The purpose of the data set is to determine whether a patient 

referred to the clinic is hypothyroid. Therefore three classes are built: normal (not 

hypothyroid), hyperfunction and subnormal functioning. Because 92 percent of the 

patients are not hyperthyroid, a good classifier must be significantly better than 92%. The 

input attributes are discrete on a scale 0 - 1 (real) and the 3 output attributes (1, 2, or 3) 

are encoded with a 1-of-3 encoding (1 0 0, 0 1 0, or 0 0 1). 

 

5.1.4 Breast Cancer 
 

The breast cancer data set was originally obtained from Dr. William H. Wolberg 

(physician) at the University of Wisconsin Hospitals, Madison, Wisconsin, USA. The 

purpose of the data set is to classify a tumor as either benign or malignant based on cell 

descriptions gathered by microscopic examination. The data set contains nine attributes 

and 699 examples of which 458 are benign examples and 241 are malignant examples. 

There are 9 input attributes, all discrete on a scale 0 - 1 (real) and 1 binary output 

attribute.  
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5.2 Experimental Setup 
 

All the data sets used have been partitioned into three sets: a training set, a validation set, 

and a testing set. The training set is used to train ANN by back propagation, the testing 

set is used to evaluate the performance of the system. The validation set is not used in this 

work. In the following experiments, according to Proben1, each data set is partitioned as 

follows. 

• For the breast cancer data set, the first 350 examples are used for the training 

set, the following 175 examples for the validation set, and the final 174 

examples for the testing set. 

• For the diabetes data set, the first 384 examples are used for the training set, the 

following 192 examples for the validation set, the final 192 examples for the 

testing set. 

• For the heart disease data set, the first 152 examples are used for the training set, 

the following 76 examples for the validation set, and the final 75 examples for 

the testing set. 

• For the thyroid data set, the first 3600 examples in “ann-train data” are used for 

the training set, the next 1800 for the validation set, and the rest 1800 for the 

testing set. 

It, however, should be kept in mind that such partitions do not represent the optimal ones 

[37]. As said before, the input attributes of the diabetes data set and heart disease data set 

are rescaled to between 0.0 and 1.0 by a linear function. The output attributes of all the 

problems are encoded using a 1-of-output representation for classes. The winner-takes-all 

method is used here, i.e., the output with the highest activation designates the class. There 

are some control parameters which need to be specified by the user. Most parameters 

used in the experiments are set to be the same: the population size (20), the learning rate 

(0.25), initial weight range -0.5 to +0.5 etc. These parameters were chosen after some 

limited preliminary experiments. They were not meant to be optimal. Actually, enormous 

amount of experiments are needed for the parameter tuning and the tuned parameter may 

be sub-optimal since parameters are independent and interacts in very complex ways. 
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This is true regardless how the parameters are tuned and is based on the observation that 

a run on an evolutionary algorithm is intrinsically dynamic and adaptive process [1]. 

In this approach, the selection mechanism used is the elitist roulette wheel scheme, which 

is described in chapter 2 more details. The error function (inverse of fitness) E is 
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where the Omax and Omin are the maximum and minimum values of output coefficients in 

the problem representation, n is the number of output nodes, T is the number of patterns 

and Y(i,t), Z(i,t) are actual and desired outputs of node for pattern. The values of Omax and 

Omin are found from the input data set before the evolution starts. The equation above was 

suggested by Prechelt [34] to make the error measure less dependent on the size of the 

validation set and the number of output nodes. Hence a mean squared error percentage is 

adopted. In this thesis, training error and testing error rate refer two different measures. 

Training error means the value calculated while training through the error function 

described above. And testing error rate is the percentage of testing input patterns that are 

incorrectly classified. 

 

5.3 Results 
 

The program is run for different epochs and different generations. Their ranges vary from 

one data set to another set. The following table summarizes the results. The Table 5.1 

shows average values, standard deviations and best results for number of connections, 

number of hidden nodes, number of generations and epochs needed, training and testing 

errors of the ANN evolved. Here the best result (* marked) is for the ANN with the least 

testing error rate. For the diabetes problem, it has been found in one generation for 200 

epochs. So, total time (epoch × generation × ANN) is 200 × 1 × 20 = 4000 only. Average 

number of epochs needed is 127.96 and average number of generations needed is 9.99. 

On average an ANN has 6 hidden nodes and 56.7 connections with testing error rate is 

0.25108. For thyroid, heart disease, breast cancer problem total time needed is 70000, 

13000 and 200 respectively. These are much less than that of the experiments done by 

others as shown in the next section. 
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Table 5.1: Experimental outcomes (* ANN with the least testing error rate) 

 
 

For the diabetes problem the following trend of generation versus error given in Figure 

5.1 is found, error is decreased as generation is increased up to certain level. Generation 

versus connections in Figure 5.2 shows that number of connection is minimized around 

generation 3. In Figure 5.3, epoch versus error for both generation 5 and 12 are shown. 

Figure 5.4 indicates, error is minimized when time is near 30000. 
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Figure 5.1: Generation Vs Error for diabetes. 

 

 
Figure 5.2: Generation Vs Connections for diabetes. 

 

 
Figure 5.3: Epoch Vs Error for diabetes. 
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Figure 5.4: Time Vs Error for diabetes. 

 

For the thyroid problem, as depicted in Figure 5.5, it is found the following trend of 

generation versus error, error is decreased as generation is increased up to certain level. 

Generation versus connections in Figure 5.6 shows that number of connection is 

minimum around generation 3. In Figure 5.7, epoch versus error for both generation 1 

and 7 are shown. Figure 5.8 indicates, error is minimized when time is near 27000. 

 

 

 
Figure 5.5: Generation Vs Error for Thyroid. 
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Figure 5.6: Generation Vs Connections for Thyroid. 

 

 
Figure 5.7: Epoch Vs Error for Thyroid. 

 
Figure 5.8: Time Vs Error for Thyroid. 
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For the heart disease problem the following trend of generation versus error graph in 

Figure 5.9 is found, error is decreased as generations is increased up to certain level. 

Generation versus connections in Figure 5.10 shows that number of connection is 

maximizing around generation 45. In Figure 5.11, epoch versus error for both generation 

20 and 60 are shown. Figure 5.12 indicates, error is minimized when time is near 26000. 

 

 
Figure 5.9: Generation Vs Error for heart disease. 

 

 
Figure 5.10: Generation Vs Connections for heart disease. 
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Figure 5.11: Epoch Vs Error for heart disease. 

 

 
Figure 5.12: Time Vs Error for heart disease. 

 

For the breast cancer problem the following trend of generation versus error in Figure 

5.13 is found, error is decreased as generation is increased up to certain level. Generation 

versus connections in Figure 5.14 shows that number of connection is maximizing around 

generation 40. In Figure 5.15, epoch versus error for both generation 1 and 10 are shown. 

Figure 5.16 indicates error is minimized when time is near 22000. 
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Figure 5.13: Generation Vs Error for breast cancer. 

 

 
Figure 5.14: Generation Vs Connections for breast cancer. 
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Figure 5.15: Epoch Vs Error for breast cancer. 

 

 
Figure 5.16: Time Vs Error for breast cancer. 

 
Here is now given an example of ANN, both cellular encoding and direct encoding. It is 

taken the best (in term of least error rate) ANN found in breast cancer data set. The CE of 

this ANN is: PAR, PAR, SEQ, CUT 30, CUT 21, CUT 22, MRG 20, END, PAR, END, 

END, END, END.  The program symbol tree is shown in Figure 5.17. 
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Figure 5.17: PST of the best ANN found in breast cancer problem. 

 

The corresponding direct encoding is shown in Figure 5.18 too. 

 

 
Figure 5.18: DE of the best ANN found in breast cancer problem. 

 

5.4 Comparison with other works 
 

Direct comparison with other evolutionary approaches to designing ANN is very difficult 

due to the lack of such results. Instead, the best and latest results available in the 

literature, regardless of whether the algorithm used was an evolutionary, a BP or a 

statistical one, are used in the comparison. It is possible that some papers which should 

have been compared with were overlooked. However, the aim of this thesis is not to 

compare this algorithm exhaustively with all other algorithms. 
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First, the results are compared with EPNet [62] although the data sets used for some 

problems may differ. For example, for the heart disease problem EPNet does not used 27 

disputable patterns, but here is used. For heart disease, thyroid and breast cancer 

problems, the partitions into training and testing data sets are not matched too. Yet, one 

can have a rough comparison among the experimental outcomes as shown in Table 5.2 

through Table 5.5. Here the best result (* marked) found in this approach is for the ANN 

with least testing error rate. Whereas the best counted in EPNet was based on 

compactness of the evolved ANN. 

Although EPNet can evolve very compact ANN which generalizes well, they come with 

the cost of additional computation time in order to perform search. The total time needed 

in the breast cancer problem, for example, by EPNet was very high. It could require 

roughly 109,000 epochs for a single run [62] whereas it is on average around 14,000 in 

this approach. Although, the actual time was less since few runs reached the maximal 

number of generations. Similar estimations can be applied to other problems. 

Table 5.2: Comparison with EPNet for heart disease problem. 

 
Table 5.3: Comparison with EPNet for diabetes problem. 
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Table 5.4: Comparison with EPNet for Thyroid problem. 

 
Table 5.5: Comparison with EPNet for breast cancer problem. 

 
 

It is also compared with the results of different other works (L Prechelt, W. Schiffman, R. 

Miranda, K. Bennet, O. L. Mangasarian, R. Werner , R. Reed, A. Roy, S. Govil etc). The 

following tables (Table 5.6 through Table 5.9) show them concisely. Here the 

evolutionary system proposed beats all other systems except for the thyroid data set as 

shown in Table 5.9. 

 

For the heart disease problem, Table 5.6 shows results from this algorithm and other 

neural and non-neural algorithms. The GM algorithm [3] is used to construct RBF 

networks. It produced a RBF network of 24 Gaussians with 18.18% testing error. Bennet 

and Mangasarian [30] reported a testing error rate of 16.53% with their MSM1 method, 

25.92% with their MSM method, and about 25% with BP, which is much worse than the 

worst ANN evolved here. The best manually designed ANN achieved 14.78% testing 



 85

error [34], which is worse than the best result of this approach, 5.33%. Again, Panayiota 

et. al. [39] found 16.8% training error rate and 27.4% testing error rate by their enhanced 

guided annealing technique. 

Table 5.6: Comparison with other works for heart disease problem. 

 
 

For the breast cancer problem, Prechelt [34] reported results on manually constructed 

ANN (denoted as HDANN’s) after testing a number of different ANN architectures. 

Table 5.7 shows that this approach found better ANN with error rate 0.5714% whereas it 

is 1.149% with HDANN. Again, Panayiota et.al. [39] found 2.35% training error rate and 

4.7% testing error rate by their enhanced guided annealing technique. Ravi et. al. got it 

upto 95.5% accuracy level by their ALAR method [45]. 

Table 5.7: Comparison with other works for breast cancer problem. 

 
 

The diabetes problem is one of the most challenging problems in ANN and machine 

learning due to its relatively small data set and high noise level. In the medical domain, 

data are often very costly to obtain. It would be unreasonable if an algorithm relies on 

more training data to improve its generalization. Table 5.8 compares the result with that 

one produced by Prechelt [34]. He found an ANN with eight hidden node which achieved 

the testing error rate of 0.2135 (21.35%), while ANN with the testing error rate of 0.2083 

(20.83%) is achieved here outperforming his results. 
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Table 5.8: Comparison with other works for diabetes problem. 

 
 

Schiffmann et al. [59] tried the thyroid problem using a 21-20-3 network. They found that 

several thousand learning passes were necessary to achieve a testing error rate of 2.6% 

for this network. They also used their genetic algorithm to train multilayer ANN on the 

reduced training data set containing 713 examples. They obtained a network with testing 

error rate 2.5%. These results are slightly better than those generated by the ANN 

evolved by this approach. Table 5.9 summarizes the above results. 

Table 5.9: Comparison with other works for thyroid problem. 
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Chapter 6 

Conclusion & Future Research 
 

 

6.1 Concluding Remarks 
 

This thesis presents a new indirect encoding scheme, known as MCE, based on CE for 

evolving feedforward ANNs. The salient feature MCE is that it does not permutation 

problem of conventional crossover operator of Gas. A close and complete set of program 

symbols is chosen to generate the PSTs, i.e. the genotypes of ANNs. Some symbols of 

CE are excluded and the functionalities of other symbols are changed. New restrictions 

are also imposed on their appearances in the PSTs. These upgradations of CE result a 

permutation problem free encoding. 

Consequently, one can employ the genetic operator crossover on the genotypes of ANNs 

in the evolutionary system, that is, the difficulties in producing highly fit offspring would 

no longer exist with crossover operators. Here, crossover tries all kinds of evolutions, i.e. 

deletion or addition of nodes and connections. Close behavioural link between the parents 

and their offspring is maintained by adopting a number of techniques. For example, 

partial training is always employed after each architectural change in order to reduce the 

behavioural disruption to an individual. To reduce the drastic change of architecture (and 

behaviour) from parents to their children, crossover is allowed at the lower levels of PSTs 

with higher probability. A hidden node is not added to an existing ANN at random, but 

through splitting an existing node by means of an additional program symbol to its PST. 

The proposed genetic search algorithm in this paper implements these strategies which 

imply significant improvement is the reduction of the number of user specified 

parameters. Since this approach searches a much larger space than that searched by most 
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other constructive or pruning algorithms and thus seems to require longer computation 

time, but it outperforms the time needed in other contemporary works. 

 

6.2 Future Directions 
 

In this subsection, four directions are given to extend the research followed in this thesis. 

a) One of the important goals of the contemporary research going on the evolutionary 

artificial neural network is to reduce evolution time. In the evolutionary search training 

algorithm is not applied directly on the genotypes of the population. Rather a conversion 

of the cellular encoding to direct encoding is performed to learn current population 

through backpropagation. If it can be saved this conversion time by incorporating directly 

the cellular encodings with the training phase, then significant improvement in the 

generation time will be gained. Researchers are still waiting for an efficient training 

algorithm directly applicable over cellular encoded neural networks. 

b) Another future research direction can be reducing the number of user defined 

parameters. Not only that, evolutionary parameters can be made adaptive with the search 

performance. Eiben et.al. [1] describe in details why it is necessary. As mentioned earlier, 

parameter tuning by hand is a common practice in evolutionary computation. Typically, 

one parameter is tuned at a time, which may cause some sub-optimal choices, since 

parameters are not independent and they often interact in a complex way. Simultaneous 

tuning of more parameters, however, leads to an enormous amount of experiments. Also, 

it is intuitive that different values of parameters might be optimal at different stages the 

dynamic evolutionary process. Hence adaptive (with respect to search stages / 

performances) parameters may lead to superior search result. 

c) In order to reduce the noise in fitness evolution, the evolutionary system can evolve 

ANN architectures and weights simultaneously. Learned architectures and weights in 

one generation are inherited by the next generation. This is closer to the Lamarckian 

evolution than to the Darwinian one. Also, this is quite different from most genetic 

approaches where only architectures not weights are passed to the next generation [62]. 

d) To improve the rate of convergence in the training process for ANN one can follow 

the parallel nonlinear optimizing techniques proposed recently by Paul et. al. [40], which 
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ultimately will speed up the evolutionary search. Also, ANN task decomposition method 

can be adopt based on output parallelism [51] to increase learning speed. Divide and 

conquer (DCL) scheme by Hsin et. al. [26] and the suggestions for associative memories 

proposed by Yingquan et. al. [63] can also be considered. 

e) One of the future improvements would be giving more attention to the compactness of 

the evolved ANN. For example, the EPNet algorithm of Xin Yao et. al. [62] produces 

very compact ANN which is an attractive property of their evolutionary approach. But 

this is achieved at the cost of longer computation time. Thus, if a new evolutionary 

system can be proposed that encourages the parsimony of the evolved ANN without 

compromising the evolution time, it will be a very appreciable. 
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Appendix A 
 

 

Neural Network Glossary 
 

In this section some of the common terms about neural networks and genetic evolution, 

which have not discussed in the previous chapters, are given for the interested reader. 

 

Activation / Initialization function: The time-varying value that is the output of a 

neuron. 

 

Artificial Intelligence: An interdisciplinary approach to understanding human 

intelligence that has its common thread the computer as an experimental vehicle. 

 

Associative memory: Also called `content-addressable' memory. This type of memory is 

not stored on any individual neuron but is a property of the whole network. It is by 

inputting to the network part of the memory. This is very different from conventional 

computer memory where a given memory (or piece of data) is assigned a unique address 

which is needed to recall that memory. 

 

Baldwin effect: In hybrid strategies, the effect of using the individual's fitness 

determined by the objective function value after application of a local search. The 

individual's genotype serves as initial condition of the local search. However, unlike 

Lamarckian evolution, the individual's genotype remains unchanged. 

 

Bias: The net input (or bias) is proportional to the amount that incoming neural 

activations must exceed in order for a neuron to fire. 
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Connectivity: The amount of interaction in a system, the structure of the weights in a 

neural network, or the relative number of edges in a graph. 

 

Elitism/ elitist selection: Property of selection methods, which guarantees the survival of 

the best individual(s). 

 

Encode network: A perceptron network designed to illustrate that the hidden layer nodes 

play a crucial role in allowing the network to learn about special features in the input 

patterns. Once it has learnt about the `generalized' features of the training pattern sit it can 

respond usefully in new situations. 

 

Epoch: One complete presentation of the training set to the network during training. 

 

Fitness: Evaluation of an individual with respect to its reproduction capability. Selection 

in EA is based on the fitness. Generally, it is determined on the basis of the objective 

value(s) of the individual in comparison with all other individuals in the selection pool. 

The fitness function may additionally depend on different side conditions/constraints and 

stochastic influences (fitness noise/noisy fitness). The term ``fitness function'' is often 

used as a synonym for objective function. It varies greatly from one type of program to 

the next. For example, if one were to create a genetic program to set the time of a clock, 

the fitness function would simply be the amount of time that the clock is wrong. 

Unfortunately, few problems have such an easy fitness function; most cases require a 

slight modification of the problem in order to find the fitness. 

 

Generalization: A measure of how well a network can respond to new images on which 

it has not been trained but which are related in some way to the training patterns. An 

ability to generalize is crucial to the decision making ability of the network. 

 

Genotype: In EA with genotype-phenotype mapping, the genotype is the representation 

on which the crossover and mutation operators are applied to (see also phenotype). 
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Hopfield network: A particular example of an artificial neural network capable of 

storing and recalling memories or patterns. All nodes in the network feed signals to all 

others. 

 

Input layer: Neurons whose inputs are fed from the outside world. 

 

Lamarckian evolution: Adjustment of the genotype to the locally optimized offspring 

(local search) in hybrid strategies. 

 

Layer: A group of neurons that have a specific function and are processed as a whole. 

The most common example is in a feedforward network that has an input layer, an output 

layer and one or more hidden layers. 

 

Learning parameter: Also learning rate, in self-adaptive ES/EP, an exogenous strategy 

parameter which influences the speed of self-adaptation of the mutation strength 

 

Linear Networks: A general scientific principal is that a simple model should always be 

chosen in preference to a complex model if the latter does not fit the data better. In terms 

of function approximation, the simplest model is the linear model, where the fitted 

function is a hyperplane. In classification, the hyperplane is positioned to divide the two 

classes (a linear discriminant function); in regression, it is positioned to pass through the 

data. A linear model is typically represented using an N × N matrix and an N × 1 bias 

vector. 

A neural network with no hidden layers, and an output with dot product synaptic function 

and identity activation function, actually implements a linear model. The weights 

correspond to the matrix, and the thresholds to the bias vector. When the network is 

executed, it effectively multiplies the input by the weights matrix then adds the bias 

vector. 

The linear network provides a good benchmark against which to compare the 

performance of your neural networks. It is quite possible that a problem that is thought to 

be highly complex can actually be solved as well by linear techniques as by neural 
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networks. If you have only a small number of training cases, you are probably anyway 

not justified in using a more complex model. 

 

Multilayer-perceptron (MLP): This is perhaps the most popular network architecture in 

use today, due originally to Rumelhart and McClelland (1986) and discussed at length in 

most neural network textbooks (e.g., Bishop, 1995). MLP is a type of feedforward neural 

network that is an extension of the perceptron in that it has at least one hidden layer of 

neurons. Layers are updated by starting at the inputs and ending with the outputs. Each 

neuron computes a weighted sum of the incoming signals, to yield a net input, and passes 

this value through its sigmoidal activation function to yield the neuron's activation value. 

Unlike the perceptron, an MLP can solve linearly inseparable problems. A graphical 

representation of an MLP is shown below. 

 
Figure A.1: A multilayer perceptron. 

 

Neuron: A simple computational unit that performs a weighted sum on incoming signals, 

adds a threshold or bias term to this value to yield a net input, and maps this last value 

through an activation function to compute its own activation. Some neurons, such as 

those found in feedback or Hopfield networks, will retain a portion of their previous 

activation. 
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Output neuron: A neuron within a neural network whose outputs are the result of the 

network. 

 

Over-learning and Generalization: One major problem with the approach outlined 

above is that it doesn't actually minimize the error that one is really interested in - which 

is the expected error the network will make when new cases are submitted to it. In other 

words, the most desirable property of a network is its ability to generalize to new cases. 

In reality, the network is trained to minimize the error on the training set, and short of 

having a perfect and infinitely large training set, this is not the same thing as minimizing 

the error on the real error surface - the error surface of the underlying and unknown 

model. The most important manifestation of this distinction is the problem of over-

learning, or over-fitting. 

How can one select the right complexity of network? A larger network will almost 

invariably achieve a lower error eventually, but this may indicate over-fitting rather than 

good modeling. The answer is to check progress against an independent data set, the 

selection set. Some of the cases are reserved, and not actually used for training in the 

back propagation algorithm. Instead, they are used to keep an independent check on the 

progress of the algorithm. It is invariably the case that the initial performance of the 

network on training and selection sets is the same (if it is not at least approximately the 

same, the division of cases between the two sets is probably biased). As training 

progresses, the training error naturally drops, and providing training is minimizing the 

true error function, the selection error drops too. However, if the selection error stops 

dropping, or indeed starts to rise, this indicates that the network is starting to overfit the 

data, and training should cease. When over-fitting occurs during the training process like 

this, it is called over-learning. In this case, it is usually advisable to decrease the number 

of hidden units and/or hidden layers, as the network is over-powerful for the problem at 

hand. In contrast, if the network is not sufficiently powerful to model the underlying 

function, over-learning is not likely to occur, and neither training nor selection errors will 

drop to a satisfactory level. 
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Perceptron: An artificial neural network capable of simple pattern recognition and 

classification tasks. It is composed of three layers where signals only pass forward from 

nodes in the input layer to nodes in the hidden layer and finally out to the output layer. 

There are no connections within a layer. 

 

Phenotype: Expression of the properties coded by the individual's genotype. The 

expression/development of the phenotype can additionally be influenced by (stochastic) 

constraints. The precise definition is mostly problem-dependent. For parameter 

optimization the phenotype is usually identical with the object parameters, whereas for 

structure optimization (e.g. of neural networks) the phenotype represents a specific 

structure. 

 

Population: Pool of individuals exhibiting equal or similar genome structures, which 

allows the application of genetic operators 

Probabilistic Neural Networks: A useful interpretation of network outputs was as 

estimates of probability of class membership, in which case the network was actually 

learning to estimate a probability density function (p.d.f.). A similar useful interpretation 

can be made in regression problems if the output of the network is regarded as the 

expected value of the model at a given point in input-space. This expected value is related 

to the joint probability density function of the output and inputs. 

Estimating probability density functions from data has a long statistical history (Parzen, 

1962), and in this context fits into the area of Bayesian statistics. Conventional statistics 

can, given a known model, inform us what the chances of certain outcomes are (e.g., it is  

known that an unbiased die has a 1/6th chance of coming up with a six). Bayesian 

statistics turns this situation on its head, by estimating the validity of a model given 

certain data. More generally, Bayesian statistics can estimate the probability density of 

model parameters given the available data. To minimize error, the model is then selected 

whose parameters maximize this p.d.f. 

In the context of a classification problem, if one can construct estimates of the p.d.f.s of 

the possible classes, one can compare the probabilities of the various classes, and select 
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the most-probable. This is effectively what one ask a neural network to do when it learns 

a classification problem - the network attempts to learn (an approximation to) the p.d.f. 

A more traditional approach is to construct an estimate of the p.d.f. from the data. The 

most traditional technique is to assume a certain form for the p.d.f. (typically, that it is a 

normal distribution), and then to estimate the model parameters. The normal distribution 

is commonly used as the model parameters (mean and standard deviation) can be 

estimated using analytical techniques. The problem is that the assumption of normality is 

often not justified. 

An alternative approach to p.d.f. estimation is kernel-based approximation (Parzen, 1962; 

Speckt, 1990; Speckt, 1991; Bishop, 1995; Patterson, 1996). One can reason loosely that 

the presence of particular case indicates some probability density at that point: a cluster 

of cases close together indicate an area of high probability density. Close to a case, one 

can have high confidence in some probability density, with a lesser and diminishing level 

as one moves away. In kernel-based estimation, simple functions are located at each 

available case, and added together to estimate the overall p.d.f. Typically, the kernel 

functions are each Gaussians (bell-shapes). If sufficient training points are available, this 

will indeed yield an arbitrarily good approximation to the true p.d.f. 

This kernel-based approach to p.d.f. approximation is very similar to radial basis function 

networks, and motivates the probabilistic neural network (PNN) and generalized 

regression neural network (GRNN), both devised by Speckt (1990 and 1991). PNNs are 

designed for classification tasks and GRNNs for regression. These two types of network 

are really kernel-based approximation methods cast in the form of neural networks. 

In the PNN, there are at least three layers: input, radial, and output layers. The radial units 

are copied directly from the training data, one per case. Each models a Gaussian function 

centered at the training case. There is one output unit per class. Each is connected to all 

the radial units belonging to its class, with zero connections from all other radial units. 

Hence, the output units simply add up the responses of the units belonging to their own 

class. The outputs are each proportional to the kernel-based estimates of the p.d.f.s of the 

various classes, and by normalizing these to sum to 1.0 estimates of class probability are 

produced. 
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The greatest advantages of PNNs are the fact that the output is probabilistic (which 

makes interpretation of output easy), and the training speed. Training a PNN actually 

consists mostly of copying training cases into the network, and so is as close to 

instantaneous as can be expected. 

The greatest disadvantage is network size: a PNN network actually contains the entire set 

of training cases, and is therefore space-consuming and slow to execute. 

PNNs are particularly useful for prototyping experiments (for example, when deciding 

which input parameters to use), as the short training time allows a great number of tests 

to be conducted in a short period of time. 

 

Radial Basis Function Networks: MLP models response functions using the 

composition of sigmoid-cliff functions - for a classification problem, this corresponds to 

dividing the pattern space up using hyperplanes. The use of hyperplanes to divide up 

space is a natural approach - intuitively appealing, and based on the fundamental 

simplicity of lines. An equally appealing and intuitive approach is to divide up space 

using circles or (more generally) hyperspheres. A hypersphere is characterized by its 

center and radius. More generally, just as an MLP unit responds (non-linearly) to the 

distance of points from the line of the sigmoid-cliff, in a radial basis function network 

(Broomhead and Lowe, 1988; Moody and Darkin, 1989; Haykin, 1994) units respond 

(non-linearly) to the distance of points from the center represented by the radial unit. The 

response surface of a single radial unit is therefore a Gaussian (bell-shaped) function, 

peaked at the center, and descending outwards. Just as the steepness of the MLP's 

sigmoid curves can be altered, so can the slope of the radial unit's Gaussian. MLP units 

are defined by their weights and threshold, which together give the equation of the 

defining line, and the rate of fall-off of the function from that line. Before application of 

the sigmoid activation function, the activation level of the unit is determined using a 

weighted sum, which mathematically is the dot product of the input vector and the weight 

vector of the unit; these units are therefore referred to as dot product units. In contrast, a 

radial unit is defined by its center point and a radius. A point in N dimensional space is 

defined using N numbers, which exactly corresponds to the number of weights in a dot 

product unit, so the center of a radial unit is stored as weights. The radius (or deviation) 
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value is stored as the threshold. It is worth emphasizing that the weights and thresholds in 

a radial unit are actually entirely different to those in a dot product unit, and the 

terminology is dangerous if you don't remember this: Radial weights really form a point, 

and a radial threshold is really a deviation. 

A radial basis function network (RBF), therefore, has a hidden layer of radial units, each 

actually modeling a Gaussian response surface. Since these functions are nonlinear, it is 

not actually necessary to have more than one hidden layer to model any shape of 

function: sufficient radial units will always be enough to model any function. The 

remaining question is how to combine the hidden radial unit outputs into the network 

outputs? It turns out to be quite sufficient to use a linear combination of these outputs 

(i.e., a weighted sum of the Gaussians) to model any nonlinear function. The standard 

RBF has an output layer containing dot product units with identity activation function. 

RBF networks have a number of advantages over MLPs. First, as previously stated, they 

can model any nonlinear function using a single hidden layer, which removes some 

design-decisions about numbers of layers. Second, the simple linear transformation in the 

output layer can be optimized fully using traditional linear modeling techniques, which 

are fast and do not suffer from problems such as local minima which plague MLP 

training techniques. RBF networks can therefore be trained extremely quickly (i.e., orders 

of magnitude faster than MLPs). 

Experience indicates that the RBF's more eccentric response surface requires a lot more 

units to adequately model most functions. Of course, it is always possible to draw shapes 

that are most easily represented one way or the other, but the balance does not favor 

RBFs. Consequently, an RBF solution will tend to be slower to execute and more space 

consuming than the corresponding MLP (but it was much faster to train, which is 

sometimes more of a constraint). RBFs are also more sensitive to the curse of 

dimensionality, and have greater difficulties if the number of input units is large. 

 

Self-organizing: A network is called self-organizing if it is capable of changing its 

connections so as to produce useful responses for input patterns without the instruction of 

a smart teacher. 
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Sigmoid function: An S-shaped function that is often used as an activation function in a 

neural network. 

 

SOFM Networks: Self Organizing Feature Map (SOFM, or Kohonen) networks are used 

quite differently to the other networks. Whereas all the other networks are designed for 

supervised learning tasks, SOFM networks are designed primarily for unsupervised 

learning (see Kohonen, 1982; Haykin, 1994; Patterson, 1996; Fausett, 1994). A SOFM 

network has only two layers: the input layer, and an output layer of radial units (also 

known as the topological map layer). The units in the topological map layer are laid out 

in space - typically in two dimensions. SOFM networks are trained using an iterative 

algorithm. Once the network has been trained to recognize structure in the data, it can be 

used as a visualization tool to examine the data. 

 

Threshold: A quantity added to (or subtracted from) the weighted sum of inputs into a 

neuron, which forms the neuron's net input. Intuitively, the net input (or bias) is 

proportional to the amount that the incoming neural activations must exceed in order for a 

neuron to fire. 

 

Weight: In a neural network, the strength of a synapse (or connection) between two 

neurons. Weights may be positive (excitatory) or negative (inhibitory). The thresholds of 

a neuron are also considered weights, since they undergo adaptation by a learning 

algorithm. 


